4:
sin^4x+cos^4x
=(sin^2x+cos^2x)^2-2*sin^2x*cos^2x
=1-2*sin^2x*cos^2x
=1-2*(sinx*cosx)^2
5:
180 độ<x<270 độ
=>sin x<0 và cosx<0
1+tan^2x=1/cos^2x
=>\(\dfrac{1}{cos^2x}=1+\dfrac{1}{36}=\dfrac{37}{36}\)
=>\(cos^2x=\dfrac{36}{37}\)
=>\(cosx=-\dfrac{6}{\sqrt{37}}\)
\(sinx=-\sqrt{1-cos^2x}=-\dfrac{1}{\sqrt{37}}\)
cot x=1:1/6=6