Hàm số xác định `<=>` \(\left\{{}\begin{matrix}\dfrac{1-cosx}{1-sinx}\ge0\\1-sinx\ne0\end{matrix}\right.\)
Có: \(\left\{{}\begin{matrix}1-cosx\ge0\forall x\\1-sinx\ge0\forall x\end{matrix}\right.\)
`1-sinx \ne 0 <=> sinx \ne 1 <=> x \ne π/2+k2π (k \in ZZ)`
`=> (1-cosx)/(1-sinx) >=0 forall x \ne π/2+k2π (k \in ZZ)`
`D=RR \\ {π/2+k2π}`.