Một hình trụ có bán kính r và chiều cao \(h=r\sqrt{3}\)
a) Tính diện tích xung quanh và diện tích toàn phần của hình trụ
b) Tính thể tích khối trụ tạo nên bởi hình trụ đã cho
c) Cho hai điểm A và B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa đường thẳng AB và trục của hình trụ bằng \(30^0\). Tính khoảng cách giữa đường thẳng AB và trục của hình trụ ?
Cho hình trụ bán kính r và có chiều cao cũng bằng r. Một hình vuông ABCD có hai cạnh AB và CD lần lượt là các dây cung của hai đường tròn đáy, còn cạnh BC và AD không phải là đường sin của hình trụ. Tính diện tích của hình vuông đó và côsin của góc giữa mặt phẳng chứa hình vuông và mặt phẳng đáy ?
Giúp mik 2 câu này với
Câu 326 : Thiết diện qua trục của một hình nón tròn xoay là một tam giác vuông cân có diện tích 2a2. Khi đó thể tích của khối nón là
a.\(\dfrac{2\sqrt{2}\pi a^3}{3}\) b.\(\dfrac{\pi a^3}{3}\) c.\(\dfrac{4\sqrt{2}\pi a^3}{3}\) d.\(\dfrac{\sqrt{2}\pi a^3}{3}\)
Cho hình trụ có chiều cao 9cm và có diện tích đáy là 18cm. Tính diện tích xung quanh, diện tích toàn phần và thể tích
Một hình nón tròn xoay có đỉnh là D, tâm của đường tròn đáy là O, đường sinh bằng l và có góc giữa đường sinh và mặt phẳng đáy bằng \(\alpha\)
a) Tính diện tích xung quanh của hình nón và thể tích khối nón được tạo nên ?
b) Gọi I là một điểm trên đường cao DO của hình nón sao cho \(\dfrac{DI}{DO}=k;\left(0< k< l\right)\). Tính diện tích thiết diện qua I và vuông góc với trực của hình nón ?
Ứng dụng của mặt tròn xoay trong các bài toán thực tiễn, liên môn? Tại sao người ta lại sử dụng mặt tòn xoay trong đa số các vật dụng trong đời sống?
ba đọan SA,SB,SC đôi một cùng vuông góc tạo thành một từ diện SABC với SA=á,SB=2a,SC=3a.bán kính mặt cầu ngoại tiếp tứ diện SABC là :
Một hình nón tròn xoay có thiết diện qua trục là một tam giác vuông cân có cạnh bằng a.
a) Tính diện tích toàn phần và thể tích của hình nón đó ?
b) Một mặt phẳng đi qua đỉnh tạo với mặt phẳng đáy một góc \(60^0\). Tính diện tích thiết diện được tạo nên ?
Cho mặt phẳng (P). Gọi A là một điểm nằm trên (P) và B là một điểm nằm ngoài (P) sao cho hình chiếu H của B trên (P) không trùng với A. Một điểm M chạy trên mặt phẳng (P) sao cho góc \(\widehat{ABM}=\widehat{BMH}\)
Chứng minh rằng điểm M luôn luôn nằm trên một mặt trụ tròn xoay có trục là AB ?