Bài 1: Khái niệm về mặt tròn xoay

Bài 1 (SGK trang 39)

Hướng dẫn giải

Xét đường thẳng ∆ đi qua điểm O và vuông gó với mặt phẳng (P). Gọi l là đưởng thẳng đi qua M0 ε (C) và l vuông góc với (P). Do đó l // ∆. Quay mặt phẳng (Q) tạo bởi l và ∆ quanh đường thẳng ∆, thì đường thẳng l vạch lên một mặt trụ tròn xoay. Mặt trụ này chứa tất cả những đường thẳng đi qua các điểm M ε (C) và vuông góc với (P). Trục của mặt trụ là ∆ và bán kính của trụ bằng r.

(Trả lời bởi Võ Đông Anh Tuấn)
Thảo luận (1)

Bài 2 (SGK trang 39)

Hướng dẫn giải

Theo định nghĩa ta thấy kết quả:

a) HÌnh trụ tròn xoay có đường cao là cạnh thứ tư còn bán kính hình trụ bằng độ dài của cạnh kề với cạnh thứ tư đó.

b) Hình nón tròn xoay có chiều cao bằng chiều cao của tam giác cân, cond bán kính đáy bằng một nửađộ dài cạnh đáy của tam giác cân đó.

c) Khối nón tròn xoay.

d) Khối trụ tròn xoay.


(Trả lời bởi Minh Thư)
Thảo luận (1)

Bài 3 (SGK trang 39)

Hướng dẫn giải

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

b)-Mặt phẳng (DMN) cắt hình lập phương theo thiết diện MEDNF trong đó ME // ND, FN //DE và chia hình lập phương thành hai khối đa diện (H) và (H’), gọi phần khối lập phương chứa A, B, A’, mặt phẳng (DMN) là (H)

-Chia (H) thành các hình chóp F.DBN, D.ABFMA’ và D.A’EM.

Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12Giải bài  trang  sgk Giải tích 12 | Để học tốt Toán 12

(Trả lời bởi Hai Binh)
Thảo luận (2)

Bài 4 (SGK trang 39)

Hướng dẫn giải

Kẻ BH ⊥ d ta có BH = 10cm

Gọi \(\alpha=\widehat{ABH}\)

Ta có: \(\sin\alpha=\dfrac{BH}{AB}=\dfrac{1}{2}\Rightarrow\alpha=30^o\)

Vậy đường thẳng d luôn thuộc mặt nón nhận đường thẳng AB làm trục và có góc ở đỉnh bằng 2α = 60°

(Trả lời bởi Hai Binh)
Thảo luận (1)

Bài 5 (SGK trang 39)

Hướng dẫn giải

a) Theo đầu bài, hình trụ có chiều cao h = 7 cm và bán kính đáy r = 5 cm.

Vậy diện tích xung quanh bằng: Sxq= πrh = 35π (cm2)

Thể tích của khối trụ là:

V = πr2h = 175π (cm3)

b) Thiết diện là hình chữ nhật có một cạnh bằng chiều cao của hình trụ bằng 7 cm. Giả sử thiết diện là ABCD.

Ta có AD = 7 cm, OI = 3 cm.

Do tam giác OAI vuông tại A nên

AI2 = OA2 – OI2 = 25 – 9 = 16.

Vậy AI = 4 cm, AB = 8 cm.



(Trả lời bởi Hai Binh)
Thảo luận (2)

Bài 6 (SGK trang 39)

Bài 7 (SGK trang 40)

Hướng dẫn giải

Theo công thức ta có:

Sxq = 2πrh = 2√3 πr2

Stp = 2πrh + 2πr2 = 2√3 πr2 + 2 πr2 = 2(√3 + 1)πr2 ( đơn vị thể tích)

b) Vtrụ = πR2h = √3 π r3

c) Giả sử trục của hình trụ là O1O2 và A nằm trên đường tròn tâm O1, B nằm trên đường tròn tâm O2; I là trung điểm của O1O2, J là trung điểm cảu AB. Khi đó IJ là đường vuông góc chung của O1O2 và AB. Hạ BB1 vuông góc với đáy, J1 là hình chiếu vuông góc của J xuống đáy.

Ta có là trung điểm của , = IJ.

Theo giả thiết = 300.

do vậy: AB1 = BB1.tan 300 = = r.

Xét tam giác vuông

AB1 = BB1.tan 300 = O1J1A vuông tại J1, ta có: = - .

Vậy khoảng cách giữa AB và O1O2 :


(Trả lời bởi Minh Thư)
Thảo luận (1)

Bài 8 (SGK trang 40)

Bài 9 (SGK trang 40)

Hướng dẫn giải

a) Cạnh huyền chính bằng đường kính đáy do vậy bán kính đáy r = và đường cao h = r, đwòng sinh l = a.

Vậy Sxq = πrl = ( đơn vị diện tích)

Sđáy = = ( đơn vị diện tích);

Vnón = ( đơn vị thể tích)

b) Gọi tâm đáy là O và trung điểm cạnh BC là I.

Theo giả thiết, = 600.

Ta có diện tích ∆ SBC là: S = (SI.BC)/2

Ta có SO + SI.sin600 = .

Vậy .

Ta có ∆ OIB vuông ở I và BO = r = ;

OI = SI.cos600 = .

Vậy BI = và BC = .

Do đó S = (SI.BC)/2 = (đơn vị diện tích)


(Trả lời bởi Minh Thư)
Thảo luận (1)

Bài 10 (SGK trang 40)

Hướng dẫn giải

Hạ đường sinh AA1 vuông góc với đáy chứa cạnh CD. Khi đó góc ADA1 là góc giữa hai mặt phẳng hình vuông và mặt đáy.

Vì góc A1DC = 1v nên A1C là đường kính.

Gọi cạnh hình vuông là a.

Ta có

a2 = AD2 = AA12 + A1D2

mà AA1 = h = r, nên ta có:

A1D2 + DC2 = A1C2;

a2 – r2 + a2 = 4r2;

⇒a2=52r2

Vậy diện tích hình vuông là: SABC=a2=52r2 Gọi δ = góc ADA1 là góc tạo bởi mặt phẳng hình vuông và đáy, ta có: sinδ = A1AAD=ra=√25
(Trả lời bởi Minh Thư)
Thảo luận (1)