\(A=\left(\sqrt{3}+1\right)^2+\dfrac{5}{4}.\sqrt{48}-\dfrac{2}{\sqrt{3}+1}\)
\(=3+2\sqrt{3}+1+\dfrac{5}{4}.\sqrt{16.3}-\dfrac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=4+2\sqrt{3}+\dfrac{5}{4}.4.\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{3-1}\)
\(=4+2\sqrt{3}+5\sqrt{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}\)
\(=4+7\sqrt{3}-\left(\sqrt{3}-1\right)\)
\(=4+7\sqrt{3}-\sqrt{3}+1\)
\(=5+6\sqrt{3}\)