\(\dfrac{4^{15}}{7^{30}}và\dfrac{8^{10}.3^{30}}{7^{30}.4^{15}}\)
ta có \(\dfrac{4^{15}}{7^{30}}=\dfrac{2^{30}}{7^{30}}=\left(\dfrac{2}{7}\right)^{30}\)
ta có \(\dfrac{8^{10}.3^{30}}{7^{30}.4^{15}}=\dfrac{2^{30}.3^{30}}{7^{30}.2^{30}}=\dfrac{6^{30}}{14^{30}}=\left(\dfrac{3}{7}\right)^{30}\)
vì \(\left(\dfrac{2}{7}\right)^{30}< \left(\dfrac{3}{7}\right)^{30}\)
\(\Rightarrow\dfrac{4^{15}}{7^{30}}< \dfrac{8^{10}.3^{30}}{7^{30}.4^{ }15}\)

