a)Ta có \(\Delta ABC\) cân tại A mà AM là đường trung tuyến
nên AM là đường trung trực hay \(AM\perp BC\)
b)Xét \(\Delta ABM\) và \(\Delta ACM\),có:
AB = AC (\(\Delta ABC\) cân tại A)
AM là cạnh chung
BM = CM ( M là trung điểm BC)
Do đó \(\Delta ABM\) = \(\Delta ACM\) (c-c-c)
c)Xét \(\Delta HBM\) và \(\Delta KCM\),Có:
\(\widehat{H}=\widehat{K}\) (\(=90^0\))
BM = MC (M là trung điểm của BC)
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\)cân tại A)
Do đó: \(\Delta HBM\) = \(\Delta KCM\) (ch-gn)
\(\Rightarrow HB=CK\) ( 2 cạnh tương ứng )
d)Ta có:\(\Delta HBM\)=\(\Delta KCM\) (cmt) nên \(\widehat{HMB}=\widehat{KMC}\)(2 cạnh tương ứng)
Ta có: \(BP\perp AC\) \(MK\perp AC\) nên BP song song MK
Suy ra \(\widehat{IBM}=\widehat{KMC}\)(2 góc đồng vị)
mà \(\widehat{IMB}=\widehat{KMC}\) nên \(\widehat{IBM}=\widehat{IMB}\) Suy ra \(\Delta IBM\) cân tại I