HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(pthh:3Fe+2O_2\overset{t^o}{--->}Fe_3O_4\)
Ta có: \(n_{Fe_3O_4}=\dfrac{92,8}{232}=0,4\left(mol\right)\)
Theo pt: \(\left\{{}\begin{matrix}n_{Fe}=3n_{Fe_3O_4}=1,2\left(mol\right)\\n_{O_2}=2n_{Fe_3O_4}=0,8\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m_{Fe}=1,2.56=67,2\left(g\right)\\V_{O_2}=0,8.22,4=17,92\left(lít\right)\end{matrix}\right.\)
\(A=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\left(x\ge0;x\ne9\right)\)
\(=\left[\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2\left(\sqrt{x}-3\right)}{x-9}\right].\dfrac{x-9}{x-3}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{x-9}.\dfrac{x-9}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-9}.\dfrac{x-9}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
\(x:7+15=-17\)
\(\Leftrightarrow\dfrac{1}{7}x=-32\)
\(\Leftrightarrow x=-224\)
\(\dfrac{\dfrac{\sqrt{x}+4}{\sqrt{x}-1}}{\dfrac{1}{\sqrt{x}-1}}>\dfrac{x}{4}+5\left(x\ge0;x\ne1\right)\)
\(\Leftrightarrow\dfrac{\sqrt{x}+4}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)>\dfrac{x+20}{4}\)
\(\Leftrightarrow\sqrt{x}+4>\dfrac{x+20}{4}\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-x-4}{4}>0\)
\(\Leftrightarrow\dfrac{-\left(\sqrt{x}-2\right)^2}{4}>0\) (vô lí)
Vậy không có nghiệm x nào thỏa mãn \(\dfrac{A}{B}>\dfrac{x}{4}+5\)
\(4\sqrt{x}-x-4>0\)
\(\Leftrightarrow-\left(x-4\sqrt{x}+4\right)>0\)
\(\Leftrightarrow-\left(\sqrt{x}-2\right)^2>0\) (vô lí)
Vậy bất phương trình vô nghiệm
Có 23 = 8
Mà 15 chia hết cho 3
=> 215 chia hết cho 8
Mà 424 cũng chia hết có 8
=> 215 + 424 chia hết cho 8
\(A=\dfrac{2-x}{1-2x}+\dfrac{1+2x}{3x}\)
\(A=\dfrac{3x\left(2-x\right)}{3x\left(1-2x\right)}+\dfrac{\left(1-2x\right)\left(1+2x\right)}{3x\left(1-2x\right)}\)
\(A=\dfrac{6x-3x^2+1-4x^2}{3x\left(1-2x\right)}=\dfrac{-7x^2+6x+1}{3x\left(1-2x\right)}\)
\(A=\dfrac{\left(x-1\right)\left(x+\dfrac{1}{7}\right)}{3x\left(1-2x\right)}\)
Có: \(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x+\dfrac{1}{7}>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x>0\\1-2x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x+\dfrac{1}{7}\right)< 0\\3x\left(1-2x\right)< 0\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left(x-1\right)\left(x+\dfrac{1}{7}\right)}{3x\left(1-2x\right)}>0\) hay \(\dfrac{\left(x-1\right)\left(x+\dfrac{1}{7}\right)}{3x\left(1-2x\right)}\ge1\)
Vậy GTNN của A là 1
a. Xét \(2\Delta\) vuông: \(\Delta AEC\) và \(\Delta ADB\) có:
\(\left\{{}\begin{matrix}BD=CE\left(gt\right)\\\widehat{A}.chung\end{matrix}\right.\)
\(\Rightarrow\Delta AEC=\Delta ADB\) (cạnh huyền - góc nhọn)
\(\Rightarrow\) AC = AB
\(\Rightarrow\Delta ABC\) cân
b. Vì \(\Delta ABC\) cân, suy ra: \(\widehat{ABC}=\widehat{ACB}\)
Chứng minh tương tự câu a, suy ra: \(\Delta BEC=\Delta CDB\)
\(\Rightarrow\widehat{ECB}=\widehat{DBC}\)
\(\Rightarrow\Delta HBC\) cân
Sai đề e nhé