a) Xét \(\Delta ABC\) cân tại A:
\(\widehat{B}=\widehat{C}=\dfrac{180^o-\widehat{A}}{2}.\left(1\right)\)
Xét \(\Delta AMN:AM=AN\left(gt\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\widehat{ANM}=\dfrac{180^o-\widehat{A}}{2}.\left(2\right)\)
Từ (1); (2) \(\Rightarrow\widehat{B}=\widehat{C}=\widehat{AMN}=\widehat{ANM}=\dfrac{180^o-\widehat{A}}{2}.\)
Ta có: \(\widehat{B}=\widehat{AMN}.\)
Mà 2 góc này ở vị trí đồng vị.
\(\Rightarrow MN//BC\left(dhnb\right).\)
Xét tứ giác BNMC:
\(MN//BC\left(cmt\right).\)
\(\Rightarrow\) Tứ giác BNMC là hình thang (dhnb).
b) Ta có:
\(\widehat{B}=\widehat{C}=\widehat{AMN}=\widehat{ANM}=\dfrac{180^o-\widehat{A}}{2}\left(cmt\right).\)
Mà \(\widehat{A}=40^o\left(gt\right).\)
\(\Rightarrow\widehat{B}=\widehat{C}=\widehat{AMN}=\widehat{ANM}=\dfrac{180^o-40^o}{2}=70^o.\)
Mà \(\left\{{}\begin{matrix}\widehat{B}+\widehat{BMN}=180^o.\\\widehat{C}+\widehat{CNM}=180^o.\end{matrix}\right.\) (MN // BC).
\(\Rightarrow\left\{{}\begin{matrix}\widehat{BMN}=110^o.\\\widehat{CNM}=110^o.\end{matrix}\right.\)