HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hình bình hành ABCD , trên cạnh AB lấy điểm M , trên cạnh BC lấy điểm N sao cho AN = CM. Gọi giao điểm của AN và CM là K . Chứng minh KD là tia phân giác của góc AKC.
Cho hình vuông ABCD . Trên cạnh BC lấy điểm M (khác B và C) . Trên cạnh AB lấy điểm N sao cho: BN = CM . Đường thẳng AM cắt CD tại E .Trên tia đối của tia CB lấy điểm F sao cho CF = CE. Gọi O là giao điểm của AC và BD .Chứng minh hai tam giác BOM và BFD đồng dạng.
Cho tam giác ABC vuông tại A, AH là đường cao. Gọi E, F lần lượt là chân đường vuông góc hạ từ H xuống AB, AC. M là điểm đối xứng với H qua E. Từ B kẻ BI vuông góc BC (I thuộc AM). Chứng minh rằng: AH, EF và CI đồng quy
Cho tam giác ABC vuông tại A (AB < AC), phân giác trong AD (D thuộc cạnh BC). Gọi M là trung điểm của đoạn thẳng BC, trên tia đối của tia DA lấy điểm K sao cho góc KBC = 45 độ, đường thẳng qua A vuông góc với AD cắt KM tại N.Phân giác của góc ABC cắt AC tại I . Gọi E là giao điểm của AC và MN. Chứng minh rằng KI2 = KM.KN