HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(W_đ=W-W_t=mg\left(h-h'\right)=0,5.10\left(100-40\right)=300\left(J\right)\)
x tiến đến \(-\infty\).
\(f\left(x\right)=2x+6\sqrt[3]{1-x}-3\) liên tục trên R.
\(f\left(1\right)=-1;f\left(0\right)=3;f\left(-7\right)=-5;f\left(9\right)=3\)
\(f\left(-7\right)f\left(0\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (-7; 0)
\(f\left(0\right)f\left(1\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (0; 1)
\(f\left(1\right)f\left(9\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (1; 9)
Vậy f(x) = 0 có 3 nghiệm phân biệt.
\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left|x\right|}{x}=\lim\limits_{x\rightarrow-\infty}\dfrac{-x}{x}=-1\)
Sai.
Đặt \(f\left(x\right)=ax^2+bx+c\).
\(f\left(0\right)=c;f\left(1\right)=a+b+c\)
Do \(a+b+2c=0\) nên c và \(a+b+c\) trái dấu. Suy ra f(0)f(1) < 0 nên f(x) = 0 luôn có ít nhất 1 nghiệm tren (0; 1).
\(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}5=5>0\\\lim\limits_{x\rightarrow1}\left(x-1\right)\left(x^2-3x+2\right)=0\\\left(x-1\right)\left(x^2-3x+2\right)=\left(x-2\right)\left(x-1\right)^2< 0\end{matrix}\right.\)
Suy ra: \(\lim\limits_{x\rightarrow1}\dfrac{5}{\left(x-1\right)\left(x^2-3x+2\right)}=-\infty\)
C