\(f\left(x\right)=2x+6\sqrt[3]{1-x}-3\) liên tục trên R.
\(f\left(1\right)=-1;f\left(0\right)=3;f\left(-7\right)=-5;f\left(9\right)=3\)
\(f\left(-7\right)f\left(0\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (-7; 0)
\(f\left(0\right)f\left(1\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (0; 1)
\(f\left(1\right)f\left(9\right)< 0\) --> f(x) = 0 có 1 nghiệm thuộc khoảng (1; 9)
Vậy f(x) = 0 có 3 nghiệm phân biệt.