ĐKXĐ: \(x\ge2\)
\(\Leftrightarrow\left(\sqrt{x-2}\right)^3+m\left(x-2\right)=1\)
Đặt \(\sqrt{x-2}=t\ge0\)
\(\Rightarrow t^3+mt^2=1\Leftrightarrow t^3+mt^2-1=0\)
Đặt \(f\left(t\right)=t^3+mt^2-1\)
Hàm \(f\left(t\right)\) là hàm đa thức nên liên tục trên R
\(f\left(0\right)=-1< 0\)
\(\lim\limits_{t\rightarrow+\infty}f\left(t\right)=\lim\limits_{t\rightarrow+\infty}\left(t^3+mt^2-1\right)=\lim\limits_{t\rightarrow+\infty}t^3\left(1+\dfrac{m}{t}-\dfrac{1}{t^3}\right)=+\infty>0\)
\(\Rightarrow\) Luôn tồn tại 1 giá trị \(t_0>0\) sao cho \(f\left(t_0\right)>0\)
\(\Rightarrow f\left(0\right).f\left(t_0\right)< 0\Rightarrow f\left(t\right)\) luôn có ít nhất 1 nghiệm thuộc \(\left(0;t_0\right)\) hay 1 nghiệm \(t>0\)
\(\Rightarrow\) Phương trình đã cho luôn có nghiệm \(x=2+t^2>2\)