Cho nửa đường tròn đường kính AB=2R. Vẽ tiếp tuyến Bx với nửa đường tròn, C và D là 2 điểm di động trên nửa đường tròn, các tia AC và AD cắt tia Bx lần lượt tại E và F ( F nằm giữa B và E). Chứng Minh:
a) ΔABF~ΔBDF
b) Tứ giác CEFD nội tiếp được đường tròn
c) Khi C và D thay đổi trên nửa đường tròn thì tích AC.AE =AD.AF không đổi
CHo nửa đường tròn tâm O đường kính AB=2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB.TỪ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm).AC cắt OM tại E;MB cắt nửa (O) tại D (D khác B)
a/AMCO và AMDE là các tứ giác nội tiếp
b/MNCD là tứ giác nội tiếp
Cho đường tròn tâm O và điểm A nằm ngoài đường tròn .Kẻ 2 tiếp điểm AB,AC với đường tròn ( B,C là tiếp điểm ) .Trên cũng nhỏ BC lấy 1 điểm M rồi kẻ các đường vuông góc MI,MH ,MK xuống các cạnh BC, CA,AB .Gọi giao điểm của BM và IK là P ,giao điểm của CM và IH là Q .CM:
a)Tứ giác BIMK ,CIMH nội tiếp
b) MI^2 =MH . MK
c)Tứ giác IPMQ nội tiếp rồi suy ra PQ vuông góc với M
Cho đường tròn (O) và điểm A nằm ngoài đường tròn đó.Vẽ tiếp tuyến AB với đường tròn (B là tiếp điểm).Kẻ BH vuông góc AO (H thuộc AO).Trên tia đối của HB lấy C sao cho HB=HC.CMR:
1)C thuộc đường tròn (O) và AC là tiếp tuyến của (O)
2)Vẽ cát tuyến AMN với đường tròn (O) (AM<AN;tia AM nằm giữa 2 tia AO và AC).CM:AM.AN=AH.AO
3)Gọi I là trung điểm của MN.Tia CI cắt đường tròn (O) tại K.CM:BK//MN