Chứng minh MN vuông góc với AB. Chứng minh MN = NH
Cho nửa đường tròn tâm 0 có đường kính AB. Vẽ các tiếp tuyến Ax By. Qua 1 điểm M thuộc nửa đường tròn, kẻ tiếp tuyến thứ 3 cắt Ax, By theo thứ tự ở C, D. Gọi N là giao điểm của AD và BC, H là giao điểm của MN và AB. Chứng minh rằng:
a. MN vuông góc với AB
b. MN=NH
Cho đường tròn (O), đường kính AB=2R. Trên tâm O lấy điểm M(MA<MB). Tiếp tuyến tại M (O) cắt 2 tiếp tuyến tại A và B của đường tròn lần lượt tại C, D.CM:
a) CM CD=AC+BD
b)Vẽ đường thẳng MB cắt AC tại E và vẽ MH vuông AB tại H. CM OC//MB và ME.MB=AH.AB
c)HM là tia phân giác của góc CHD