Bài 1:
a)
\(\left(x-2\right)-15=65\)
\(x-2\) \(=65+15\)
\(x-2\) \(=\) \(80\)
\(x\) \(=80+2\)
\(x\) \(=82\)
b)
\(115-2\cdot\left(x-3\right)=35\)
\(2\cdot\left(x-3\right)=115-35\)
\(2\cdot\left(x-3\right)=80\)
\(x-3=80:2\)
\(x-3=40\)
\(x\) \(=40+3\)
\(x\) \(=43\)
c)
\(35+2\cdot\left(x-3\right)=65\)
\(2\cdot\left(x-3\right)=65-35\)
\(2\cdot\left(x-3\right)=30\)
\(x-3=30:2\)
\(x-3=15\)
\(x\) \(=15+3\)
\(x\) \(=18\)
d)
\(3\cdot\left(x-5\right)-16=11\)
\(3\cdot\left(x-5\right)\) \(=11+16\)
\(3\cdot\left(x-5\right)\) \(=27\)
\(x-5\) \(=27:3\)
\(x-5\) \(=9\)
\(x\) \(=9+5\)
\(x\) \(=14\)
Bài 2
a)
\(2^x-1=31\)
\(2^x\) \(=31+1\)
\(2^x\) \(=32\)
\(2^x\) \(=2^5\)
⇒ \(x=5\)
b)
\(x^3-1=26\)
\(x^3\) \(=26+1\)
\(x^3\) \(=27\)
\(x^3\) \(=3^3\)
⇒ \(x=3\)
c)
\(6^{x-1}+1=37\)
\(6^{x-1}\) \(=37-1\)
\(6^{x-1}\) \(=36\)
\(6^{x-1}\) \(=6^2\)
➞ \(x-1=2\)
\(x\) \(=2+1\)
\(x\) \(=3\)
d)
\(\left(x+2\right)^3-15^0=215\)
\(\left(x+2\right)^3-1=215\)
\(\left(x+2\right)^3=215+1\)
\(\left(x+2\right)^3=216\)
\(\left(x+2\right)^3=6^3\)
➞ \(x+2=6\)
\(x=6-2\)
\(x=4\)
e)
\(2\cdot\left(x-9\right)^2=2\)
\(\left(x-9\right)^2=2:2\)
\(\left(x-9\right)^2=1\)
\(\left(x-9\right)^2=1^2\)
➞ \(x-9=1\)
\(x=9+1\)
\(x=10\)
g)
\(3\cdot\left(x-5\right)^3=51\)
Câu hỏi này sai nhé bạn