HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\). Tìm giá trị lớn nhất của \(P=\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\)
Cho \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=3\). Tìm giá trị lớn nhất của P = a+b+c
Cho x,y,z >0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm giá trị nhỏ nhất của biểu thức P = \(\frac{y^2z^2}{x\left(y^2+z^2\right)}+\frac{z^2x^2}{y\left(z^2+x^2\right)}+\frac{x^2y^2}{x\left(x^2+y^2\right)}\)
Cho a,b,c >0 và a+b+c =6 . Tìm giá trị lớn nhất của biểu thức \(A=\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\)
Giải hệ phương trình\(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
Cho a+b=2 . Tính P = \(P=a^3-b^3+6ab+2016\)
Cho x,y là 2 số thực thỏa mãn\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=0\), chứng minh rằng \(x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\)
Cho a,b ∈ Z và a,b ≥ 0.Tìm các giá trị a,b thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)