Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Agami Raito

Cho a,b,c >0 và a+b+c =6 . Tìm giá trị lớn nhất của biểu thức \(A=\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ac}{c+3a+2b}\)

Trần Thanh Phương
1 tháng 8 2019 lúc 22:00

Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ta có :

\(\frac{ab}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{a+3b+2c}=\frac{ab}{9}\cdot\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\cdot\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{ab}{2b}\right)=\frac{1}{9}\cdot\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Từ đó suy ra \(A\le\frac{1}{9}\cdot\Sigma\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=\frac{1}{9}\cdot\left(a+b+c+\frac{a+b+c}{2}\right)\)

\(=\frac{1}{9}\cdot\frac{3\left(a+b+c\right)}{2}=\frac{1}{9}\cdot\frac{3\cdot6}{2}=1\)

Vậy \(maxA=1\Leftrightarrow a=b=c=2\)


Các câu hỏi tương tự
Big City Boy
Xem chi tiết
Rose Princess
Xem chi tiết
Văn Thắng Hồ
Xem chi tiết
bach nhac lam
Xem chi tiết
Tuyển Nguyễn Đình
Xem chi tiết
trung le quang
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
Ship Mều Móm Babie
Xem chi tiết
T.Huyền
Xem chi tiết