cho a,b>0 và \(a^3+b^3+6ab\le8\). tìm GTNN của \(P=\dfrac{1}{a^2+b^2}+\dfrac{3}{ab}+ab\)
Cho \(\left\{{}\begin{cases}a,b,c>0\\a+2b+3c< 1\end{cases}}\)
CMR: \(\left(1-a\right)\left(1-b\right)^2\left(1-c\right)^3\ge5^6ab^2c^3\)
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
Cho a,b thuộc R+ thỏa: a + b + 3ab = 1.
Tìm MaxP: \(P=\frac{6ab}{a+b}-a^2-b^2\)
Cho 3 số thực a,b,c thoả a2+b2+c2 -7a-8b-9c+25=0.Tính P=(a-2)2014 +(b-3)2015 +(c-4)2016
Cho 3 số thực a,b,c thỏa mãn a2+b2+c2-7a-8b-9c+25=0
Tính giá trị biểu thức D=(a-2)2014+(b-3)2015+(c-4)2016
Câu 1 : a, CMR số x0=\(\sqrt{2+\sqrt{2+\sqrt{3}}}-\sqrt{6-3\sqrt{2+\sqrt{3}}}\) là 1 nghiệm của pt x4-16x2+32=0
b, Cho x2016+y2016+z2016=x2017+y2017+z2017=1 Tính giá trị biểu thức P= x10+y10+z2017
Câu 2 : a, Cho m,n là 2 số tự nhiên nguyên tố cùng nhau . Hãy tìm ước chung lớn nhất của 2 số A= m+n và B= m2+n2
b,giải pt \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=10x-x^2-24\)
Câu 3 : cho các số thực dương a,b,c thảo mãn abc=1 . Tìm gtnn của bth S=\(\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)
Cho ba số thực a, b, c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=9\\a^2+b^2+c^2=27\end{matrix}\right.\)
Tính giá trị biểu thức P = ( a - 2 )2015 + ( b - 3 )2016 + ( c - 4 )2017
cho ba số thực a, b, c thỏa mãn: \(\left\{{}\begin{matrix}a+b+c=9\\a^2+b^2+c^2=27\end{matrix}\right.\)
Tính giá trị biểu thức \(P=\left(a-2\right)^{2015}+\left(b-3\right)^{2016}+\left(c-4\right)^{2017}\)