Học tại trường Chưa có thông tin
Đến từ Hà Nội , Chưa có thông tin
Số lượng câu hỏi 98
Số lượng câu trả lời 873
Điểm GP 87
Điểm SP 593

Người theo dõi (107)

Admin
Lê Kiều Nhi
Khách vãng lai
|KhoaVN (@--@)|
Quoc Tran Anh Le

Đang theo dõi (16)

Phan Thanh Tịnh
Phạm Đức Minh
Quoc Tran Anh Le
Đỗ Quyên
Sigma

Chủ đề:

Violympic toán 9

Câu hỏi:

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

Khác với nhiều chuyên mục thường thấy gần đây, lần này mình mang đến cho bạn hai dãy số quy luật. Mang tinh thần "học mà chơi", ai có thể giải được nhanh nhất? Ngoài ra, nếu các bạn có dãy số nào hay, hãy gửi nhé :>

[Toán.C35 _ 24.1.2021]

Điền hai số còn thiếu vào quy luật sau: 0 - 1 - 13 - 61 - ? - ?

[Toán.C36 _ 24.1.2021]

Điền số còn thiếu vào quy luật sau: 32 - 12 - 136 - 176 - ? - 196

Chủ đề:

Violympic toán 9

Câu hỏi:

Like và follow để ủng hộ và giúp đỡ chúng mình phát triển cuộc thi nha :>

Cuộc thi Toán Tiếng Anh VEMC | Facebook

Có câu hỏi hay? Gửi ngay chờ chi:

[Tiền sự kiện 1] Thử sức trí tuệ - Google Biểu mẫu

-------------------------------------------------------------------

[Toán.C31 _ 24.1.2021]

a) Cho 3a + 4b = 5. Chứng minh rằng: \(a^2+b^2\ge1\).

b) Cho \(2a^2+3b^2=5.\) Chứng minh rằng: \(2a+3b\le5\).

[Toán.C32 _ 24.1.2021]

Với \(0< a\le b\le c\)\(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{3c}\ge3;\dfrac{1}{2b}+\dfrac{1}{3c}\ge2;\dfrac{1}{3c}\ge1.\)

Chứng minh rằng: \(a^2+b^2+c^2\le\dfrac{49}{36}\).

[Toán.C33 _ 24.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2}-\dfrac{1}{2}.\left(\dfrac{a^3+b^3+c^3}{abc}-\dfrac{a^2+b^2+c^2}{ab+bc+ca}\right)\le2.\)

[Toán.C34 _ 23.1.2021]

Cho a,b,c > 0. Chứng minh rằng:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge\dfrac{3\left(a^2+b^2+c^2\right)}{a+b+c}.\)