HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho các số thực x,y thỏa mãn \(\left(x-3\right)^2+\left(y-1\right)^2=5\). Tìm giá trị nhỏ nhất của biểu thức\(P=\frac{3y^2+4xy+7x+4y-1}{x+2y+1}\)
Cho a,b,c là các số thực dương tìm giá trị lớn nhất của biểu thức \(P=\frac{8a+3b+4\left(\sqrt{ab}+\sqrt{bc}+\sqrt[3]{abc}\right)}{1+\left(a+b+c\right)^2}.\)
g
Tìm giá trị nhỏ nhất của biểu thức \(P=\left|4x-3\right|+\left|5y+\frac{15}{2}\right|+\frac{35}{2}\)
Tìm giá trị của x,y sao cho biểu thức \(P=\frac{2}{3}-\frac{21}{\left(x+3y\right)^2+5\left|x+5\right|+14}\) đạt giá trị nhỏ nhất
Cho x,y là các số thực sao cho \(x-2y+2=2\left(\sqrt{x-1}+\sqrt{3-2y}\right)\). Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức S = x - 2y. Tính M + m
Cho x,y là các số thực sao cho \(2x^2+y^2+xy\ge1\) . Biết rằng giá trị nhỏ nhất của biểu thức \(M=x^2+y^2\) có dạng \(\frac{a-b\sqrt{b}}{c}\)
trong đó a,b,c là các số nguyên dương. Tính tổng S = a + b + c
Cho bốn số thực a,b,x,y bất kì đồng thời thỏa mãn các điều kiện : \(x\ge a\ge0,y\ge b\ge0\) và \(\frac{x-y}{2}=\frac{a-b}{3}\) . . Tìm giá trị nhỏ nhất của P = (x + 2a)(y + 2b) theo a và b
Cho hai số thực x,y thỏa mãn \(x^2+y^2-xy=1\) . Tìm số thực k lớn nhất sao cho \(x^4+y^4-x^2y^2\ge k\)
giá trị nhỏ nhất của hàm số \(y=\frac{x}{3-x}+\frac{1-x}{4}\) là một số có dạng \(\sqrt{a}-\frac{b}{c}\) với a,b,c là các số nguyên dương và \(\frac{b}{c}\) là phân số tối giản. Tính P = a + b + c
Cho x,y thỏa mãn \(x^2+y^2=1\) . biểu thức \(A=-11x^2+4y^2+8xy\) đạt giá trị lớn nhất là M khi \(x=\frac{a}{\sqrt{c}},y=\frac{b}{\sqrt{c}}\) trong đó a,b,c là các số nguyên dương và \(\frac{a}{c},\frac{b}{c}\) tối giản . Tính P = M + a + b + c