HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
thầy mình bảo phân tích cách này thành nhân tử rồi nhớ nghiệm và máy tính mà bấm chứ chắc cái này cao siêu quá chưa đến lượt bọn mình giải đâu
A B C I D
Ta có:\(\dfrac{AI}{AD}=\dfrac{3}{4}\Leftrightarrow\dfrac{AI}{ID}=3\)
ABC là tam giác cân và AD là phân giác nên BC=2BD
Xét tam giác ABD có BI là phân giác nên:
\(\dfrac{AI}{ID}=\dfrac{AB}{BD}=3\Leftrightarrow AB=3BD\)
Lại có: \(AB+AC+BC=80\Leftrightarrow2AB+2BD=80\left(AB=AC\right)\)
\(\Leftrightarrow6BD+2BD=80\Leftrightarrow8BD=80\Leftrightarrow BD=10\)
\(\Leftrightarrow BC=2BD=20\left(cm\right)\)
ý bạn là bài này nên giải kiểu j: Hằng đẳng thức hay là các bất đẳng thức đặc biệt
ức chế nhất cái búa
Đã tìm ra: là số vô tỉ thì sao đến đây ra 2 trường hợp
1 Đề bài thiếu
2 @Mai Thành Đạt sai rồi nha
bạn xem lại đề hộ mình rồi mình trình bày nha
bạn ơi, câu c nó cứ sai sai kiểu gì ấy
câu 2 thì dựa vào đây nhưng chưa đầy đủ đâu bạn làm nốt nhé https://hoc24.vn/hoi-dap/question/197024.html?pos=675443
Ta có: \(pq+q=13+q^2\Leftrightarrow q\left(p+1\right)=13+q^2\)
Vì\(q^2⋮q\Leftrightarrow13⋮q\Leftrightarrow\left[{}\begin{matrix}q=1\\q=13\end{matrix}\right.\)
Nếu q =1 thì:\(p+1=14\Leftrightarrow p=13\)
\(\Rightarrow pq=13\left(cm^2\right)\)(1)
Nếu q=13 thì:\(13p+13=182\Leftrightarrow p=13\)
\(\Rightarrow pq=169\left(cm^2\right)\)(2)
Từ (1)(2) ta có: \(max\left(pq\right)=169\left(cm^2\right)\)
Bạn xem hộ mình sai ở đâu k