a) Xét \(\bigtriangleup\) ADB vuông tại D và \(\bigtriangleup\) CAB vuông tại A có:
\(\widehat{ABC}\) chung
\(\Rightarrow\) \(\bigtriangleup\)ADB đồng dạng với \(\bigtriangleup\)CAB(g-g)
b) Xét \(\bigtriangleup\) ABE vuông tại A và \(\bigtriangleup\) ACB vuông tại A có:
\(\widehat{ABE}=\widehat{ACB}\) ( = \(\dfrac{1}{2}\)\(\widehat{ABC}\))
\(\Rightarrow\) \(\bigtriangleup\)ABE đồng dạng với \(\bigtriangleup\)ACB (g-g)
\(\Rightarrow\) \(\dfrac{AB}{AC}=\dfrac{AE}{AB}\) \(\Rightarrow\) \(AB^2=AC.AE\)
c) Xét \(\bigtriangleup\) ABD có BD là tia phân giác \(\widehat{ABD}\) \(\Rightarrow\) \(\dfrac{DF}{AF}=\dfrac{BD}{AB}\) (1)
Xét \(\bigtriangleup\) ABC có BE là tia phân giác \(\widehat{ABC}\) \(\Rightarrow\) \(\dfrac{AE}{EC}=\dfrac{AB}{BC}\)(2)
Mà ta có \(\bigtriangleup\)ADB đồng dạng với \(\bigtriangleup\)CAB(CMT)
\(\Rightarrow\) \(\dfrac{BD}{AB}=\dfrac{AB}{BC}\)(3)
Từ(1);(2);(3) \(\Rightarrow\) \(\dfrac{DF}{AF}=\dfrac{AE}{EC}\)
d) Ta có \(\bigtriangleup\)ABC vuông tại A có \(\widehat{ABC}=2\widehat{ACB}\)
\(\Rightarrow\) AB=\(\dfrac{1}{2}BC\)
Ta có: 2SBFC= FD.BC; 2SABC=AD.BC
\(\Rightarrow\) \(\dfrac{2S_{BFC}}{2S_{ABC}}=\dfrac{S_{BFC}}{S_{ABC}}=\dfrac{FD.BC}{AD.BC}=\dfrac{FD}{AD}=\dfrac{BD}{AB}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
Từ đó suy ra \(\dfrac{S_{BFC}}{S_{ABC}}=\dfrac{1}{2}\)