Bài 1:
a) Để tìm nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\), ta cho đa thức \(\left(x-3\right)\left(4-5x\right)=0\).
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\5x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy nghiệm của đa thức \(\left(x-3\right)\left(4-5x\right)\) là \(3\) và \(\dfrac{4}{5}\).
b) Để tìm nghiệm của đa thức \(x^2-2\), ta cho đa thức \(x^2-2=0\).
\(\Leftrightarrow x^2=2\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}\\x=\sqrt{2}\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2-2\) là \(-\sqrt{2}\) và \(\sqrt{2}\).
c) Để tìm nghiệm của đa thức \(x^2+\sqrt{3}\), ta cho đa thức \(x^2+\sqrt{3}=0\).
\(\Leftrightarrow x^2=-\sqrt{3}\)
Vì \(x^2\ge0\) với mọi \(x\)
nên \(x^2>-\sqrt{3}\)
Vậy đa thức \(x^2+\sqrt{3}\) vô nghiệm.
d) Để tìm nghiệm của đa thức \(x^2+2x\), ta cho đa thức \(x^2+2x=0\).
\(\Leftrightarrow x\times\left(x+2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2+2x\) là \(0\) và \(-2\).
e) Để tìm nghiệm của đa thức \(x^2+2x-3\), ta cho đa thức \(x^2+2x-3=0\).
\(\Leftrightarrow x^2+2x=3\) \(\Leftrightarrow x^2+x+x+1=3+1\) \(\Leftrightarrow x\times\left(x+1\right)+\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)\left(x+1\right)=4\) \(\Leftrightarrow\left(x+1\right)^2=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=-2\\x+1=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức \(x^2+2x-3\) là \(-3\) và \(1\).
Bài 2:
a) Ta có: \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\) \(=x-2x^2+2x^2-x+4\) \(=\left(-2x^2+2x^2\right)+\left(x-x\right)+4=4\)
Vì \(f\left(x\right)=4\) với mọi \(x\)
nên \(f\left(x\right)>0\) với mọi \(x\)
Vậy đa thức \(f\left(x\right)\) vô nghiệm.
b) Ta có: \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x=x^2-5x-x^2-2x\) \(=\left(x^2-x^2\right)-\left(5x+2x\right)=-7x\)
Để tìm nghiệm của đa thức \(g\left(x\right)\), ta cho đa thức \(g\left(x\right)=0\).
\(\Leftrightarrow-7x=0\Leftrightarrow x=0\)
Vậy nghiệm của đa thức \(g\left(x\right)\) là \(0\).
c) Theo đề bài, ta có: \(h\left(x\right)=x\left(x-1\right)+1\) (Đa thức này đã được thu gọn)
Để tìm nghiệm của đa thức \(h\left(x\right)\), ta cho đa thức \(h\left(x\right)=0\).
\(\Leftrightarrow x\left(x-1\right)+1=0\Leftrightarrow x\left(x-1\right)=-1\)
\(\Rightarrow x\inƯ\left(-1\right)=\left\{-1;1\right\}\)
Ta có bảng sau: