Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 20
Số lượng câu trả lời 881
Điểm GP 115
Điểm SP 861

Người theo dõi (129)

iiipontyu
dnxhfcdrja
An Diệp Nhiên
Đặng Quốc Huy
Hải Đăng

Đang theo dõi (12)

Trịnh Seiyuu
Phương Trâm
 Mashiro Shiina
Xuân Dinh
Admin

Câu trả lời:

A B C M E K H Hình minh họa nên không chính xác lắm
Chứng minh :
a) △ABC vuông tại A có AB = AC ⇒ △ABC vuông cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-90^o}{2}=\dfrac{90^o}{2}=45^o\)
b) Ta có: \(\widehat{ABH}+\widehat{BAH}+\widehat{AHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}+90^o=180^o\)
\(\Rightarrow\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{ABH}=90^o-\widehat{BAH}\) ( 1)
Ta có:
\(\widehat{KAC}+\widehat{ACK}+\widehat{CKA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}+90^o=180^o\)
\(\Rightarrow\widehat{KAC}+\widehat{ACK}=90^o\)
Có:
\(\widehat{BAH}+\widehat{KAC}=90^o\)
\(\Rightarrow\widehat{KAC}=90^o-\widehat{BAH}\) (2)
Từ (1) và (2) ⇒ \(\widehat{KAC}=\widehat{ABH}\)
Có: \(\widehat{ABH}+\widehat{BAH}=90^o\)
\(\Rightarrow\widehat{BAH}=90^o-\widehat{ABH}\)
\(\widehat{KAC}+\widehat{ACK}=90^o\)
\(\Rightarrow\widehat{ACK}=90^o-\widehat{KAC}\)
\(\widehat{KAC}=\widehat{ABH}\) ( cmt)
\(\Rightarrow\widehat{BAH}=\widehat{ACK}\)
Xét △BHA và △AKC có:
\(\widehat{ABH}=\widehat{KAC}\text{ ( cmt )}\)
AB = AC ( gt)
\(\widehat{BAH}=\widehat{ACK}\text{ ( cmt )}\)
⇒ △BHA = △AKC ( g.c.g)
⇒ BH = AK ( tương ứng )
c ) Xét △AMB và △AMC có:
AB = AC ( gt)
AM - cạnh chung
BM = MC ( gt )
⇒ △AMB = △AMC ( c.c.c )
\(\widehat{ABM}=\widehat{ACM}\text{ ( tương ứng )}\)
Vì △ABC vuông cân tại A
\(\widehat{ABC}+\widehat{ACB}=90^o\)
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=45^o\)
Có : △AMB = △AMC ( cmt )
\(\Rightarrow\widehat{AMB}=\widehat{AMC}\text{ ( tương ứng )}\)
\(\widehat{AMB}+\widehat{AMC}=180^o\text{ ( kề bù )}\)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
\(\widehat{BAM}+\widehat{AMB}+\widehat{MBA}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{BAM}+90^o+45^o=180^o\)
\(\Rightarrow\widehat{BAM}=180^o-90^o-45^o\)
\(\Rightarrow\widehat{BAM}=45^o\)
\(\widehat{MBA}=45^o;\widehat{BMA}=90^o\)
⇒ △MBA vuông cân tại M
⇒ MA = MB
d) Có \(\widehat{HBE}+\widehat{BEH}+\widehat{EHB}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}+90^o=180^o\)
\(\widehat{HBE}+\widehat{BEH}=180^o-90^o\)
\(\Rightarrow\widehat{HBE}+\widehat{BEH}=90^o\) (3 )
Có:
\(\widehat{MEA}+\widehat{EAM}+\widehat{AME}=180^o\text{ ( đ/l tổng 3 góc của 1 tam giác )}\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}+90^o=180^o\)
\(\Rightarrow\widehat{MEA}+\widehat{EAM}=90^o\) ( 4)
\(\widehat{BEH}=\widehat{MEA}\text{ (đối đỉnh )}\)
Từ (3) và (4) ⇒ \(\widehat{HBE}=\widehat{EAM}\text{ hay }\widehat{HBM}=\widehat{KAM}\)
Xét △BMH và △AMK có:
BH = AK ( cmt )
\(\widehat{HBM}=\widehat{KAM}\text{ ( cmt)}\)
BM = AM ( cmt )
⇒ △BMH = △AMK( c.g.c)
⇒ KM = HM ( tương ứng ) ( 5)
\(\widehat{BMH}=\widehat{AMK}\text{ ( tương ứng )}\)
\(\widehat{AMK}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{BMH}+\widehat{KME}=90^o\)
\(\Rightarrow\widehat{HMK}=90^o\) (6)
Từ (5) và ( 6 ) ⇒ △MHK là tam giác vuông cân