HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm của SA biết A D = a 3 , A B = a . Khi đó khoảng cách từ C đến (MBD) là:
A . 2 a 15 10
B . a 39 13
C . 2 a 39 13
D . a 15 10
Cho khối chóp S.ABCD có đáy ABCD là hình chữ nhật. Một mặt phẳng thay đổi nhưng luôn song song với đáy và cắt các cạnh bên SA, SB, SC, SD lần lượt tại M, N, P, Q. Gọi M' , N', P', Q lần lượt là hình chiếu vuông góc của M, N, P, Q lên mặt phẳng (ABCD) Tính tỉ số A M S A để thể tích khối đa diện MNPQ.M'N'P'Q' đạt giá trị lớn nhất.
A. 2 3
B. 1 2
C. 1 3
D. 3 4