HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có : a//b
=>góc A3+góc B2=180o(2 góc trong cùng phía)
Mà góc B2=góc B4 nên: góc A3+góc B4=180o
Mặt khác góc A3- góc B4=80 (giả thiết)
Cộng vế theo vế 2 đẳng thức trên ta được : 2 góc A3=260o
=>góc A3=130o => - góc A1=130o(đối đỉnh)
-góc A2=180o-góc A3=180o-130o=50o(kề bù )
-góc A4=góc A2=50o(đối đỉnh )
=> góc B4=-80o+góc A3=130o-80o=50o
=> -góc B2=góc B4 =50o(đối đỉnh)
-góc B3=180o-góc B4=180o-50o=130o(kề bù)
-góc B1=góc B3=130o(đối đỉnh)
\(G=1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2=\left(\frac{\left(n+1\right).n}{2}\right)^2=\frac{\left(n+1\right)^2.n^2}{4}\)
kẻ Oz // Nb // Ma
*Oz//Nb
=>góc bNy = góc zOy (2 góc đồng vị)
Mà góc bNy=35o nên: góc zOy=35o
*Oz//Ma
=>góc xMa = góc xOz( 2 góc đông vị)
Mà góc xMa=50o nên: góc xOz=50o
Suy ra: góc xOy= goc zOy+ xOz=35o+50o=85o
\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+7}{4}=\frac{3-5y}{7}=\frac{2x-5y}{9}=\frac{\left(2x+7\right)+\left(3-5y\right)-\left(2x-5y\right)}{4+7-9}\)
\(=\frac{2x+7+3-5y-2x+5y}{2}=\frac{10}{2}=5\)
Suy ra:\(\frac{2x+7}{4}=5\Rightarrow2x+7=20\Rightarrow x=\frac{13}{2}\)
\(\frac{3-5y}{7}=5\Rightarrow3-5y=35\Rightarrow x=-\frac{32}{5}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (x khác 0; khác -3)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
=>x+3=308
<=>x=305 (nhận)
Vậy x=305
\(I=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right)\left(2n+3\right)}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n+1\right)\left(2n+3\right)}\right)\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n+1}-\frac{1}{2n+3}=\frac{1}{1}-\frac{1}{2n+3}\)
\(=\frac{2n+3}{2n+3}-\frac{1}{2n+3}=\frac{2n+2}{2n+3}\)
*\(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left[\frac{1}{14}+\frac{1}{7}-\left(-\frac{3}{35}\right)\right].\frac{4}{3}}=\frac{\left(\frac{18}{60}-\frac{16}{60}-\frac{21}{60}\right).\frac{5}{19}}{\left(\frac{5}{70}+\frac{10}{70}+\frac{6}{70}\right).\frac{4}{3}}=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{4}{3}}=\frac{\frac{-1}{12}}{\frac{14}{35}}=-\frac{1}{12}.\frac{35}{14}=\frac{-35}{168}\)
*\(\frac{\left(1+2+3+...+100\right).\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{63}{10}.12-21.\frac{18}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(\frac{378}{5}-\frac{378}{5}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
=\(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)
thấy ngưởi trên ko
ae đọc hỉu ko
* B=6a+2b=13a-5b-7a+7b=(13a-5b)-7.(a-b)=A-7.(a-b)
Vì A chia hết cho 7 ; 7.(a-b) chia hết cho 7 nên:
B chia hết cho 7
*A=13a-5b=6a+2b+7a-7b=B+7.(a-b)
Vì B chia hết cho 7; 7(a-b) chia hết cho 7
Nên: A chia hết cho 7