Học tại trường Chưa có thông tin
Đến từ Chưa có thông tin , Chưa có thông tin
Số lượng câu hỏi 19
Số lượng câu trả lời 185
Điểm GP 10
Điểm SP 106

Người theo dõi (11)

Đang theo dõi (56)


Câu trả lời:

a) Để chứng minh CM PQ = PN + NQ, ta sẽ sử dụng định lí Pitago trong tam giác vuông.

 

Gọi A là giao điểm của tiếp tuyến Mx và Ny. Ta có tam giác AMP và tam giác ANQ là tam giác vuông tại M và N.

 

Theo định lí Pitago, ta có:

AM^2 = AP^2 + PM^2

AN^2 = AQ^2 + NQ^2

 

Vì tam giác AMP và tam giác ANQ là tam giác vuông, nên ta có:

AP = AM - PM

AQ = AN - NQ

 

Thay vào các công thức trên, ta có:

AM^2 = (AM - PM)^2 + PM^2

AN^2 = (AN - NQ)^2 + NQ^2

 

Mở ngoặc và rút gọn, ta có:

AM^2 = AM^2 - 2AM*PM + PM^2 + PM^2

AN^2 = AN^2 - 2AN*NQ + NQ^2 + NQ^2

 

Simplifying, we have:

2AM*PM = 2AN*NQ

 

Chia cả hai vế cho 2, ta có:

AM*PM = AN*NQ

 

Vì AM = AN (vì là đường kính của nửa đường tròn), nên ta có:

PM = NQ

 

Do đó, ta có:

PQ = PM + NQ

 

Vậy, CM PQ = PN + NQ đã được chứng minh.

 

b) Để chứng minh CM góc PIO = 90 độ, ta sẽ sử dụng tính chất của tiếp tuyến và tiếp tuyến chung.

 

Gọi O là tâm của nửa đường tròn. Ta có:

Góc PIO = Góc PIM + Góc MIO

 

Vì PM là tiếp tuyến của đường tròn tại M, nên góc PIM = 90 độ.

 

Vì Mx và Ny là tiếp tuyến chung, nên góc MIO = góc NIO.

 

Vậy, góc PIO = 90 độ đã được chứng minh.

 

c) Để chứng minh CM MN là tiếp tuyến của đường tròn đường kính PQ, ta sẽ sử dụng tính chất của tiếp tuyến và góc chóp đồng quy.

 

Gọi O là tâm của nửa đường tròn. Ta có:

Góc MON = Góc MOP + Góc NOP

 

Vì MN là tiếp tuyến của đường tròn tại M, nên góc MOP = 90 độ.

 

Vì Mx và Ny là tiếp tuyến chung, nên góc NOP = góc NMO.

 

Vậy, góc MON = 90 độ.

 

Do đó, MN là tiếp tuyến của đường tròn đường kính PQ đã được chứng minh.

Câu trả lời:

Để tìm số giá trị nguyên của m trong khoảng [-10;10] sao cho giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3] nhỏ hơn 10, chúng ta cần thực hiện các bước sau:

 

1. Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

2. Kiểm tra xem giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

3. Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

 

Bước 1: Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

Để tìm giá trị lớn nhất, chúng ta có thể lấy đạo hàm của hàm số và giải phương trình đạo hàm bằng 0.

 

y' = -4x^3 + 4

 

Để tìm giá trị của x khi đạo hàm bằng 0, giải phương trình:

 

-4x^3 + 4 = 0

 

X^3 - 1 = 0

 

( x - 1)( x^2 + x + 1) = 0

 

Phương trình có 2 nghiệm: x = 1 và x^2 + x + 1 =0 (phương trình bậc 2).

 

Bước 2: Kiểm tra giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

Để kiểm tra giá trị lớn nhất của hàm số, chúng ta có thể thay x = 1 vào hàm số:

 

y = - 1^4(1) - m = 3 - m

 

Điều kiện y < 10:

 

3 - m < 10

 

- m < 7

 

m > -7

 

Bước 3: Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

Trong khoảng [-10;10], có 17 giá trị nguyên. Tuy nhiên, chúng ta chỉ quan tâm đến các giá trị m > -7.

 

Vậy, có 17 - 7 = 10 giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện y < 10.