Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trâm Bảo

Câu 38/Đề 7: Có bao nhiêu giá trị nguyên thuộc [-10;10] của m để giá trị lớn nhất của hàm số y=-x^4 +4x- m trên đoạn [-1;3] nhỏ hơn 10

Nguyễn thị thúy Quỳnh
17 tháng 12 2023 lúc 19:49

Để tìm số giá trị nguyên của m trong khoảng [-10;10] sao cho giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3] nhỏ hơn 10, chúng ta cần thực hiện các bước sau:

 

1. Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

2. Kiểm tra xem giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

3. Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

 

Bước 1: Tìm giá trị lớn nhất của hàm số y = -x^4 + 4x - m trên đoạn [-1;3].

Để tìm giá trị lớn nhất, chúng ta có thể lấy đạo hàm của hàm số và giải phương trình đạo hàm bằng 0.

 

y' = -4x^3 + 4

 

Để tìm giá trị của x khi đạo hàm bằng 0, giải phương trình:

 

-4x^3 + 4 = 0

 

X^3 - 1 = 0

 

( x - 1)( x^2 + x + 1) = 0

 

Phương trình có 2 nghiệm: x = 1 và x^2 + x + 1 =0 (phương trình bậc 2).

 

Bước 2: Kiểm tra giá trị lớn nhất của hàm số có nhỏ hơn 10 hay không.

Để kiểm tra giá trị lớn nhất của hàm số, chúng ta có thể thay x = 1 vào hàm số:

 

y = - 1^4(1) - m = 3 - m

 

Điều kiện y < 10:

 

3 - m < 10

 

- m < 7

 

m > -7

 

Bước 3: Đếm số giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện trên.

Trong khoảng [-10;10], có 17 giá trị nguyên. Tuy nhiên, chúng ta chỉ quan tâm đến các giá trị m > -7.

 

Vậy, có 17 - 7 = 10 giá trị nguyên của m trong khoảng [-10;10] thỏa mãn điều kiện y < 10.


Các câu hỏi tương tự
Quân Trương
Xem chi tiết
An Hoài Nguyễn
Xem chi tiết
Nguyễn Thái Châu
Xem chi tiết
Rhider
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Linh Miêu
Xem chi tiết
Tâm Cao
Xem chi tiết
cường hoàng
Xem chi tiết
erosennin
Xem chi tiết