Đặt \(g\left(x\right)=-x^4+8x^2+m\Rightarrow g'\left(x\right)=-4x^3+16x\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
\(f\left(-1\right)=\left|m+7\right|\) ; \(f\left(0\right)=\left|m\right|\) ; \(f\left(2\right)=\left|m+16\right|\) ; \(f\left(3\right)=\left|m-9\right|\)
\(\Rightarrow max\left\{f\left(x\right)\right\}=max\left\{\left|m-9\right|;\left|m+16\right|\right\}\)
TH1: \(\left\{{}\begin{matrix}\left|m+16\right|\ge\left|m-9\right|\\\left|m+16\right|=2018\end{matrix}\right.\) \(\Rightarrow m=2002\)
TH2: \(\left\{{}\begin{matrix}\left|m+16\right|\le\left|m-9\right|\\\left|m-9\right|=2018\end{matrix}\right.\) \(\Rightarrow m=-2027\)
Có 2 giá trị của m