HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
`f)1-2m+m^2-x^2-4x-4`
`=(m^2-2m+1)-(x^2+4x+4)`
`=(m-1)^2-(x+2)^2`
`=(m-1-x-2)(m-1+x+2)`
`=(m-x-3)(m+x+1)`
`g)100a^2-(a^2+25)^2`
`=(10a)^2-(a^2+25)^2`
`=(-a^2+10a-25)(a^2+10a+25)`
`=-(a^2-10a+25)(a+5)^2`
`=-(a-5)^2+(a-5)^2`
`h)10x^2-7x-3`
`=(10x^2-10x)+(3x-3)`
`=10x(x-1)+3(x-1)`
`=(x-1)(10x+3)`
`j)(x^2+x)^2+4x^2+4x-12`
`=(x^2+x)^2+4(x^2+x)-12`
`=[(x^2+x)^2-2(x^2+x)]+[6(x^2+x)-12]`
`=(x^2+x)(x^2+x-2)+6(x^2+x-2)`
`=(x^2+x-2)(x^2+x+6)`
`=(x-1)(x+2)(x^2+x+6)`
`k)(x^2+x+1)(x^2+x+2)-12`
`=(x^2+x)^2+3(x^2+x)+2-12`
`=(x^2+x)^2+3(x^2+x)-10`
`=[(x^2+x)^2-2(x^2+x)]+[5(x^2+x)-10]`
`=(x^2+x)(x^2+x-2)+5(x^2+x-2)`
`=(x^2+x-2)(x^2+x+5)`
`=(x-1)(x+2)(x^2+x+5)`
`a)20x^3y^4-5x^2y^3+100x^2y^4`
`=5x^2y^3(4xy-1+20y)`
`b)x^2-xy-15x+15y`
`=x(x-y)-15(x-y)`
`=(x-15)(x-y)`
`c)2x^3+8x^2+8x`
`=2x(x^2-4x+4)`
`=2x(x-2)^2`
`d)x^3-27y^6`
`=x^3-(3y^2)^3`
`=(x-3y)(x^2+3xy^2+9y^4)`
`e)36x^2-a^2+10a-25`
`=36x^2-(a^2-10a+25)`
`=(6x)^2-(a-5)^2`
`=(6x-a+5)(6x+a-5)`
`1)-3/5+7/10`
`=-6/10+7/10`
`=1/10`
`2)-7/12-8/15`
`=-35/60-32/60`
`=-67/60`
`3)0,75+1/8`
`=3/4+1/8`
`=6/8+1/8`
`=7/8`
`4)-3 1/8-(-0,12)`
`=-3-1/8+3/25`
`=-25/8+3/25`
`=-601/200`
`5)1,25+(-5/8)+(-5/2)`
`=5/4-5/8-5/2`
`=10/8-5/8-20/8`
`=-15/8`
`(2^43+2^4):(2^39+1)`
`=(2^4*2^39+2^4*1):(2^39+1)`
`=2^4*(2^39+1):(2^39+1)`
`=2^4`
`=16`
Ta có:
`(x+4)/(x-2)+(2x+5)/(x-2)` (x khác 2)
`=(x+4+2x+5)/(x-2)`
`=(3x+9)/(x-2)`
`=(3x-6+15)/(x-2)`
`=(3(x-2)+15)/(x-2)`
`=3+15/(x-2)`
Để giá trị của bt nguyên thì:
x - 2 ∈ Ư(15) = {1; -1; 3; -3; 5; -5; 15; -15}
=> x ∈ {3; 1; 5; -1; 7; -3; 17; -13}
a) Đặt: `1/x=a;1/y=b` ta có:
\(\left\{{}\begin{matrix}a-b=1\\3a+4b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\3\left(b+1\right)+4b=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=b+1\\7b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\b=\dfrac{2}{7}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{7}+1=\dfrac{9}{7}\\b=\dfrac{2}{7}\end{matrix}\right.=>\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{9}{7}\\\dfrac{1}{y}=\dfrac{2}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{9}\\y=\dfrac{7}{2}\end{matrix}\right.\)
b) Đặt: `1/x=a;1/y=b` ta có:
\(\left\{{}\begin{matrix}6a+5b=3\\9a-10b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12a+10b=6\\9a-10b=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}21a=7\\6a+5b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\2+5b=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=\dfrac{1}{5}\end{matrix}\right.=>\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{3}\\\dfrac{1}{y}=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)
`a)73^2-13^2-10^2+20*13`
`=73^2-(13^2+10^2-20*13)`
`=73^2-(13^2-2*13*10+10^2)`
`=73^2-(13-10)^2`
`=73^2-3^2`
`=(73+3)(73-3)`
`=76*70`
`=5320`
`b)x^2+8x+7`
`=(x^2+7x)+(x+7)`
`=x(x+7)+(x+7)`
`=(x+7)(x+1)`
Thay `x=49` vào bt ta có:
`(49+7)(49+1)=56*50=2800`
`78 xx 35 + 78 xx 23 + 58 xx 22`
`=78 xx (35 + 23) + 58 xx 22`
`=78 xx 58 + 58 xx 22`
`=58 xx (78 + 22)`
`=58 xx 100`
`=5800`
`9)4^16:16`
`=4^16:4^2`
`=4^14`
`10)6^12:36`
`=6^12:6^2`
`=6^10`
`11)7^8:49`
`=7^8:7^2`
`=7^6`
`12)8^4:64`
`=8^4:8^2`
`=8^2`
`13)9^7:81`
`=9^7:9^2`
`=9^5`
`14)2^40:32`
`=2^40:2^5`
`=2^35`
`15)3^100:27`
`=3^100:3^3`
`=3^97`
`16)5^25:25`
`=5^25:5^2`
`=5^23`
`17)8^19:64`
`=8^19:8^2`
`=8^17`
`18)12^8:144`
`=12^8:12^2`
`=12^6`
`19)121:11^2`
`=11^2:11^2`
`=1`
`20)10^100:1000`
`=10^100:10^3`
`=10^97`
`21)64*8^64`
`=8^2*8^64`
`=8^66`
`22)125*5^9`
`=5^3*5^9`
`=5^12`
`23)36*6^12`
`=6^2*6^12`
`=6^14`
`24)27*3^27`
`=3^3*3^27`
`=3^30`
\(\left\{{}\begin{matrix}b\perp c\\a\perp c\end{matrix}\right.\)
`=>`a//b
\(\Rightarrow\widehat{A}+\widehat{B}=180^o\) (cặp góc trong cùng phía)
\(\Rightarrow m^0+4m^0=180^0\\ \Rightarrow5m^0=180^0\\ \Rightarrow m^0=\dfrac{180^0}{5}\\ \Rightarrow m^0=36^0\)
Chọn câu số 1