HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{20^2}\) . CMR : A<1
Giải:
Có \(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}\\ \dfrac{1}{3^2}< \dfrac{1}{2\cdot3}\\ ....\\ \dfrac{1}{20^2}< \dfrac{1}{19\cdot20}\)
Nên `A=1/2^2+1/3^2+1/4^2+...+1/(20^2)<1/1.2+1/2.3+1/3.4+...+1/19.20`
`=1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20=1-1/20=19/20`
Mà `19/20<1`
nên `A<1(đpcm)`
Số đo `hat(A)=(120^0+30^0)/2=75^0`
Số đo `hat(B)=120^0-75^0=45^0`
`Delta ABC` có `hat(A)+hat(B)+hat(C)=180^0`
`=>(hat(A)+hat(B))+hat(C)=180^0`
hay `120^0+hat(C)=180^0`
`=>hat(C)=180^0-120^0=60^0`
Vậy ...
`a)`
Có `IH⊥Ox=>hat(H_1)=90^0`
`IK⊥Oy=>hat(K_1)=90^0`
Xét `Delta KIO` và `Delta HIO` có :
`{:(hat(K_1)=hat(H_1)(=90^0)),(OI-chung),(IK=IH(GT)):}}`
`=>Delta KIO=Delta HIO(c.h-c.g.v)(đpcm)`
`b)`
Có `Delta KIO=Delta HIO(cmt)=>hat(O_1)=hat(O_2)` ( 2 góc t/ứng )
mà `OI` nằm giữa `Ox` và `Oy(I in hat(xOy))`
nên `OI` là p/g của `hat(xOy)(đpcm)`
Có `x` là `y` là `2` đại lượng TLN
`=>x=a/y`
Thay `x=5;y=10` vào `x=a/y` , ta đc :
`5=a/10`
`a=5*10`
`a=50`
`=>D`