HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
ĐKXĐ: \(x\ge3\)
đkxđ
pt <=>\(\sqrt{\left(x-3\right)^2}-2\sqrt{x-3}=0\)
<=>\(\sqrt{x-3}\left(\sqrt{x-3}-2\right)\) =0
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x-3}-2=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=3\\x-3=4\end{matrix}\right.\)=>\(\left\{{}\begin{matrix}x=3\\x=7\end{matrix}\right.\)
D=130\(^o\)
c) Ta có \(\sqrt{x}\ge0\)=> \(\sqrt{x}+1>0\)
Để M < 0 thì \(\sqrt{x}-1< 0\)
\(\Leftrightarrow\sqrt{x}< 1\Leftrightarrow x< 1\)
Để M < 0 thì x < 1
b) Thay x=9 vào M ta có:
\(M=\dfrac{\sqrt{9}-1}{9+1}\) = \(\dfrac{3-1}{9+1}\) =\(\dfrac{2}{10}\)=\(\dfrac{1}{5}\)
\(M=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)
\(=\dfrac{1\left(x+1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\)
\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+1\right)}\) = \(\dfrac{\sqrt{x}-1}{x+1}\)
a) C chắn AB là đường kính
=> C = 90
=> Tam giác ABC vuông
Xét tam giác AMB ta có:
AC là đường cao
=> Theo hệ thức lượng trong tam giác vuông ta có:
=> BA\(^2\)=BC.BM