Bài 2: Phương trình đường thẳng

Bài tập 3 (SGK Cánh Diều - Tập 2 - Trang 78)

Hướng dẫn giải

Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;0;0} \right)\); mặt phẳng \(\left( {{P_3}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {0;0;1} \right)\).

Ta có: \(\cos \left( {\left( {{P_1}} \right),\left( {{P_3}} \right)} \right) = \frac{{\left| {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{\left| {1.0 + 0.0 + 0.1} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = 0\) nên \(\left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = {90^o}\).

Vậy mặt phẳng (P) vuông góc với mặt phẳng \(\left( {{P_3}} \right)\).

Chọn C

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 2 (SGK Cánh Diều - Tập 2 - Trang 78)

Hướng dẫn giải

Vì đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - \left( { - 1} \right)}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8} \Leftrightarrow \frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8}\)

Chọn B

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 7 (SGK Cánh Diều - Tập 2 - Trang 79)

Hướng dẫn giải

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1;\sqrt 3 ;0} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {\sqrt 3 ;1;0} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.\sqrt 3  + \sqrt 3 .1 + 0.0} \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2} + {0^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {1^2} + {0^2}} }} = \frac{{\sqrt 3 }}{2}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)

b) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {2;1; - 1} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {3;1; - 2} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {2.3 + 1.1 + \left( { - 1} \right).\left( { - 2} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{3^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{3\sqrt {21} }}{{14}}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {11^o}\)

c) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {1;1; - 1} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( { - 1;3;1} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.\left( { - 1} \right) + 3.1 + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {3^2} + {1^2}} }} = \frac{{\sqrt {33} }}{{33}}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {80^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 4 (SGK Cánh Diều - Tập 2 - Trang 78)

Hướng dẫn giải

a) Với \(t = 0\) ta có: \(\left\{ \begin{array}{l}x = 1 - 0 = 1\\y = 3 + 2.0 = 3\\z =  - 1 + 3.0 =  - 1\end{array} \right.\) nên điểm \(A\left( {1;3; - 1} \right)\) thuộc đường thẳng \(\Delta \).

Với \(t = 1\) ta có: \(\left\{ \begin{array}{l}x = 1 - 1 = 0\\y = 3 + 2.1 = 5\\z =  - 1 + 3.1 = 2\end{array} \right.\) nên điểm \(B\left( {0;5;2} \right)\) thuộc đường thẳng \(\Delta \).

b) Thay \(x = 6;y =  - 7;z =  - 16\) vào phương trình đường thẳng \(\Delta \) ta có:

\(\left\{ \begin{array}{l}6 = 1 - t\\ - 7 = 3 + 2t\\ - 16 =  - 1 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t =  - 5\\t =  - 5\\t =  - 5\end{array} \right. \Leftrightarrow t =  - 5\)

Do đó, điểm \(C\left( {6; - 7; - 16} \right)\) thuộc đường thẳng \(\Delta \).

Thay \(x =  - 3;y = 11;z =  - 11\) vào phương trình đường thẳng \(\Delta \) ta có:

\(\left\{ \begin{array}{l} - 3 = 1 - t\\11 = 3 + 2t\\ - 11 =  - 1 + 3t\end{array} \right.\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}t = 4\\t = 4\\t = \frac{{ - 10}}{3}\end{array} \right.\)  (vô lí)

Do đó, điểm \(D\left( { - 3;11; - 11} \right)\) không thuộc đường thẳng \(\Delta \).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 6 (SGK Cánh Diều - Tập 2 - Trang 79)

Hướng dẫn giải

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {2;1; - 1} \right)\) và đi qua điểm \(A\left( {1;2;3} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( { - 6; - 3;3} \right)\) và đi qua điểm \(B\left( { - 11; - 6;10} \right)\).

Vì \( - 3\overrightarrow {{u_1}}  = \left( { - 6; - 3;3} \right) = \overrightarrow {{u_2}} \), suy ra \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( { - 12; - 8;7} \right)\) và \(\frac{2}{{ - 12}} \ne \frac{1}{{ - 8}}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{M_1}{M_2}} \) không cùng phương.

Vậy \({\Delta _1}//{\Delta _2}\).

b) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {3;4;5} \right)\) và đi qua điểm \(A\left( {1;2;3} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {1;2; - 3} \right)\) và đi qua điểm \(B\left( { - 3; - 6;15} \right)\).

Ta có: \(\frac{3}{1} \ne \frac{4}{2}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( { - 4; - 8;12} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}4&5\\2&{ - 3}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}5&3\\{ - 3}&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}3&4\\1&2\end{array}} \right|} \right) = \left( { - 22;14;2} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB}  = \left( { - 22} \right).\left( { - 4} \right) + 14.\left( { - 8} \right) + 2.12 = 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \) đồng phẳng. Vậy \({\Delta _1}\) cắt \({\Delta _2}\).

c) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {4;3;1} \right)\) và đi qua điểm \(A\left( { - 1;1;0} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {1;2;2} \right)\) và đi qua điểm \(B\left( {1;3;1} \right)\).

Ta có: \(\frac{4}{1} \ne \frac{3}{2}\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} \) không cùng phương.

Lại có: \(\overrightarrow {AB}  = \left( {2;2;1} \right)\), \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}3&1\\2&2\end{array}} \right|;\left| {\begin{array}{*{20}{c}}1&4\\2&1\end{array}} \right|;\left| {\begin{array}{*{20}{c}}4&3\\1&2\end{array}} \right|} \right) = \left( {4; - 7;5} \right)\)

Vì \(\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {AB}  = 4.2 - 7.2 + 5.1 =  - 1 \ne 0\) nên \(\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} ,\overrightarrow {AB} \) không đồng phẳng. Vậy \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 8 (SGK Cánh Diều - Tập 2 - Trang 79)

Hướng dẫn giải

a) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u  = \left( {\sqrt 3 ;0;1} \right)\).

Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {\sqrt 3 ;0;1} \right)\).

Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {\sqrt 3 .\sqrt 3  + 0.0 + 1.1} \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} }} = \frac{4}{4} = 1\) nên \(\left( {\left( P \right),\Delta } \right) = {90^o}\).

b) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u  = \left( {1; - 1;1} \right)\).

Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n  = \left( {1;1;1} \right)\).

Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {1.1 + \left( { - 1} \right).1 + 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{1}{3}\) nên \(\left( {\left( P \right),\Delta } \right) \approx {19^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 10 (SGK Cánh Diều - Tập 2 - Trang 80)

Hướng dẫn giải

a) Ta có: \(\overrightarrow {SA}  = \left( {\frac{a}{2};0;\frac{{ - a\sqrt 3 }}{2}} \right),\overrightarrow {CD}  = \left( {a;0;0} \right)\).

Do đó, \(\cos \left( {SA,CD} \right) = \frac{{\left| {\frac{a}{2}.a + 0.0 - \frac{{a\sqrt 3 }}{2}.0} \right|}}{{\sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {0^2} + {{\left( {\frac{{ - a\sqrt 3 }}{2}} \right)}^2}} .\sqrt {{a^2} + {0^2} + {0^2}} }} = \frac{1}{2}\) nên \(\left( {SA,CD} \right) = {60^o}\).

b) Mặt phẳng (SAC) nhận \(\left[ {\overrightarrow {SA} ,\overrightarrow {AC} } \right]\) làm một vectơ pháp tuyến.

Ta có: \(\overrightarrow {SA}  = \left( {\frac{a}{2};0;\frac{{ - a\sqrt 3 }}{2}} \right),\overrightarrow {AC}  = \left( { - a;a;0} \right),\overrightarrow {SD}  = \left( {\frac{a}{2};a;\frac{{ - a\sqrt 3 }}{2}} \right)\).

\(\left[ {\overrightarrow {SA} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{\frac{{ - a\sqrt 3 }}{2}}\\a&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{{ - a\sqrt 3 }}{2}}&{\frac{a}{2}}\\0&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{a}{2}}&0\\{ - a}&a\end{array}} \right|} \right) = \left( {\frac{{{a^2}\sqrt 3 }}{2};\frac{{{a^2}\sqrt 3 }}{2};\frac{{{a^2}}}{2}} \right)\)

Do đó, \(\sin \left( {\left( {SAC} \right),SD} \right) = \frac{{\left| {\frac{{{a^2}\sqrt 3 }}{2}.\frac{a}{2} + \frac{{{a^2}\sqrt 3 }}{2}.a + \frac{{{a^2}}}{2}.\frac{{ - a\sqrt 3 }}{2}} \right|}}{{\sqrt {{{\left( {\frac{{{a^2}\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{{a^2}\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{{a^2}}}{2}} \right)}^2}} \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {a^2} + {{\left( {\frac{{ - a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{\sqrt {42} }}{{14}}\).

Suy ra, \(\left( {\left( {SAC} \right),SD} \right) \approx {28^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 11 (SGK Cánh Diều - Tập 2 - Trang 80)

Hướng dẫn giải

a) Đường thẳng AB đi qua điểm \(A\left( {3,5; - 2;0,4} \right)\) và nhận \(\overrightarrow {AB}  = \left( {0;7,5; - 0,4} \right)\) làm một vectơ chỉ phương nên phương trình tham số của đường thẳng AB là:

\(\left\{ \begin{array}{l}x = 3,5\\y =  - 2 + 7,5t\\z = 0,4 - 0,4t\end{array} \right.\) (t là tham số).

b) Mặt phẳng (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k  = \left( {0;0;1} \right)\).

Do đó, \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 + 7,5.0 + \left( { - 0,4} \right).1} \right|}}{{\sqrt {{0^2} + {{\left( { - 7,5} \right)}^2} + {{\left( { - 0,4} \right)}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{4\sqrt {5641} }}{{5641}}\) nên \(\left( {AB,\left( {Oxy} \right)} \right) \approx {3^o}\). Do đó, góc trượt nằm trong phạm vi cho phép.

c) Mặt phẳng \(\left( \alpha  \right)\) là mặt phẳng (MNP).

Ta có: \(\overrightarrow {MN}  = \left( { - 5; - 5;0} \right),\overrightarrow {MP}  = \left( { - 5;0;0,5} \right)\)

Ta có: \(\left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 5}&0\\0&{0,5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 5}\\{0,5}&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 5}&{ - 5}\\{ - 5}&0\end{array}} \right|} \right) = \left( { - 2,5;2,5; - 25} \right)\)

Mặt phẳng (MNP) nhận \(\left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( { - 2,5;2,5; - 25} \right)\) làm một vectơ pháp tuyến.

Do đó, phương trình mặt phẳng \(\left( \alpha  \right)\) là:

\( - 2,5\left( {x - 5} \right) + 2,5\left( {y - 0} \right) - 25\left( {z - 0} \right) \Leftrightarrow x - y + 10z - 5 = 0\)

Vì C là vị trí mà máy bay xuyên qua đám mấy để hạ cánh nên C là giao điểm của đường thẳng AB và mặt phẳng \(\left( \alpha  \right)\).

Vì C thuộc AB nên \(C\left( {3,5; - 2 + 7,5t;0,4 - 0,4t} \right)\). Mà C thuộc mặt phẳng \(\left( \alpha  \right)\) nên:

\(3,5 - \left( { - 2 + 7,5t} \right) + 10\left( {0,4 - 0,4t} \right) - 5 = 0\), suy ra \(t = \frac{9}{{23}}\). Do đó, \(C\left( {\frac{7}{2};\frac{{43}}{{46}};\frac{{28}}{{115}}} \right)\).

d) Vì D thuộc AB nên \(D\left( {3,5; - 2 + 7,5t';0,4 - 0,4t'} \right)\)

D là vị trí mà máy bay ở độ cao 120m, tức là khoảng cách từ D đến mặt phẳng (Oxy) bằng 120m và bằng 0,12km.

Ta có: \(d\left( {D,\left( {Oxy} \right)} \right) = \frac{{\left| {0,4 - 0,4t'} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = \left| {0,4 - 0,4t'} \right|\)

Do đó, \(\left| {0,4 - 0,4t'} \right| = 0,12 \Leftrightarrow \left[ \begin{array}{l}0,4 - 0,4t' = 0,12\\0,4 - 0,4t' =  - 0,12\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t' = 0,7\\t' = 1,3\end{array} \right.\)

Với \(t' = 0,7\) ta có \(D\left( {3,5;3,25;0,12} \right)\).

Với \(t' = 1,3\) ta có \(D\left( {3,5;7,75; - 0,12} \right)\).

Vì D là vị trí độ cao của máy bay nên \(D\left( {3,5;3,25;0,12} \right)\).

e) Ta có: \(DE = \sqrt {{{\left( {3,5 - 3,5} \right)}^2} + {{\left( {4,5 - 3,25} \right)}^2} + {{\left( {0 - 0,12} \right)}^2}}  \approx 1,256\left( {km} \right)\)

Vì tầm nhìn xa của phi công sau khi ra khỏi đám mây là \(900m = 0,9km < 1,256km\) nên người phi công đó không đạt được quy định an toàn bay.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 9 (SGK Cánh Diều - Tập 2 - Trang 79)

Hướng dẫn giải

Mặt phẳng \(\left( {{P_1}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}}  = \left( {1;1;2} \right)\); mặt phẳng \(\left( {{P_2}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left( {2; - 1;1} \right)\).

Do đó, \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {1.2 + 1\left( { - 1} \right) + 2.1} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} \sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{2}\) nên \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = {60^o}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Bài tập 5 (SGK Cánh Diều - Tập 2 - Trang 78)

Hướng dẫn giải

a) Vì đường \(\Delta \) đi qua điểm \(A\left( { - 1;3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 2;3;4} \right)\) nên:

+ Phương trình tham số: \(\left\{ \begin{array}{l}x =  - 1 - 2t\\y = 3 + 3t\\z = 2 + 4t\end{array} \right.\) (t là tham số).

+ Phương trình chính tắc: \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 2}}{4}\).

b) Vì \(\Delta \) đi qua hai điểm \(M\left( {2; - 1;3} \right)\) và \(N\left( {3;0;4} \right)\) nên phương trình chính tắc của \(\Delta \) là:

\(\frac{{x - 2}}{{3 - 2}} = \frac{{y + 1}}{{0 + 1}} = \frac{{z - 3}}{{4 - 3}} \Leftrightarrow \frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{1}\).

Phương trình tham số của \(\Delta \): \(\left\{ \begin{array}{l}x = 2 + t\\y =  - 1 + t\\z = 3 + t\end{array} \right.\) (t là tham số).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)