Bài 2: Phương trình đường thẳng

Khởi động (SGK Cánh Diều - Tập 2 - Trang 65)

Hướng dẫn giải

Trong hệ tọa độ Oxyz, đường thẳng đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\), vecto chỉ phương là \(\overrightarrow u = (a;b;c)\) có:

Phương trình tham số: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\), trong đó a, b, c không đồng thời bằng 0, t là tham số.

Phương trình chính tắc: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\) với \(abc \ne 0\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 1 (SGK Cánh Diều - Tập 2 - Trang 65)

Hướng dẫn giải

Giá của vectơ \(\overrightarrow {A'C'} \) là đường thẳng A’C’. Mà AC//A’C’ (do ABCD.A’B’C’D’ là hình hộp) nên giá của vectơ \(\overrightarrow {A'C'} \) song song đường thẳng AC.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 1 (SGK Cánh Diều - Tập 2 - Trang 65)

Hướng dẫn giải

Giá của vectơ \(\overrightarrow {B'D'} \) là đường thẳng B’D’. Mà BD//B’D’ (do ABCD.A’B’C’D’ là hình hộp) nên vectơ \(\overrightarrow {B'D'} \) là vectơ chỉ phương của đường thẳng BD.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 2 (SGK Cánh Diều - Tập 2 - Trang 66)

Hướng dẫn giải

a) Hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_o}M} \) cùng phương với nhau.

b) Vì hai vectơ \(\overrightarrow u \) và \(\overrightarrow {{M_o}M} \) cùng phương với nhau nên tồn tại số thực t khác 0 sao cho \(\overrightarrow {{M_o}M} = t\overrightarrow u \).

c) Ta có: \(\overrightarrow {{M_o}M} = \left( {x - 1;y - 2;z - 3} \right)\).

Theo b ta có: \(\overrightarrow {{M_o}M} = t\overrightarrow u \) nên \(\left\{ \begin{array}{l}x - 1 = 2t\\y - 2 = - 3t\\z - 3 = 5t\end{array} \right.\). Do đó, \(\left\{ \begin{array}{l}x = 2t + 1\\y = - 3t + 2\\z = 5t + 3\end{array} \right.\).

d) Vì \(M\left( {x;{\rm{ }}y;{\rm{ }}z} \right)\) và theo b ta có \(\left\{ \begin{array}{l}x = 2t + 1\\y = - 3t + 2\\z = 5t + 3\end{array} \right.\) nên tọa độ (x; y; z) của điểm M (nằm trên \(\Delta \)) thỏa mãn hệ phương trình: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - 3t\\z = 3 + 5t\end{array} \right.\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 2 (SGK Cánh Diều - Tập 2 - Trang 67)

Hướng dẫn giải

Mặt phẳng (P) có một vectơ pháp tuyến là \(\overrightarrow n \left( {3; - 1;2} \right)\).

Vì đường thẳng \(\Delta \) vuông góc với mặt phẳng (P) nên đường thẳng \(\Delta \) nhận \(\overrightarrow n \left( {3; - 1;2} \right)\) làm một vectơ chỉ phương.

Lại có, \(\Delta \) đi qua điểm \(C\left( {1;2; - 4} \right)\) nên phương trình tham số của đường thẳng \(\Delta \) là: \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - t\\z = - 4 + 2t\end{array} \right.\) (t là tham số).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 3 (SGK Cánh Diều - Tập 2 - Trang 67)

Hướng dẫn giải

Vì M (x; y; z) nằm trên \(\Delta \) nên \(\left\{ \begin{array}{l}x = 2 + 3t\\y = 4 + 7t\\z = 5 + 8t\end{array} \right.\)  \( \Rightarrow \left\{ \begin{array}{l}t = \frac{{x - 2}}{3}\\t = \frac{{y - 4}}{7}\\t = \frac{{z - 5}}{8}\end{array} \right.\). Do đó, \(\frac{{x - 2}}{3} = \frac{{y - 4}}{7} = \frac{{z - 5}}{8}\).

Do đó, điểm M(x; y; z) nằm trên \(\Delta \) thỏa mãn hệ phương trình \(\frac{{x - 2}}{3} = \frac{{y - 4}}{7} = \frac{{z - 5}}{8}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 3 (SGK Cánh Diều - Tập 2 - Trang 68)

Hướng dẫn giải

Đường thẳng \(\Delta \) đi qua \(M\left( { - 1;3;6} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {2; - 5;9} \right)\) nên phương trình chính tắc của đường thẳng \(\Delta \) là: \(\frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 5}} = \frac{{z - 6}}{9}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 4 (SGK Cánh Diều - Tập 2 - Trang 68)

Hướng dẫn giải

a) Một vectơ chỉ phương của đường thẳng AB là \(\overrightarrow {AB}  = \left( {2;3;6} \right)\).

b) Đường thẳng AB có một vectơ chỉ phương là \(\overrightarrow {AB}  = \left( {2;3;6} \right)\).

Mà đường thẳng AB đi qua điểm \(A\left( {1;2;3} \right)\) nên phương trình tham số của đường thẳng AB là: \(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + 3t\\z = 3 + 6t\end{array} \right.\) (t là tham số).

c) Phương trình chính tắc của đường thẳng AB là: \(\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{6}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Luyện tập 4 (SGK Cánh Diều - Tập 2 - Trang 69)

Hướng dẫn giải

Phương trình chính tắc của đường thẳng OM là: \(\frac{{x - 0}}{a} = \frac{{y - 0}}{b} = \frac{{z - 0}}{c} \Leftrightarrow \frac{x}{a} = \frac{y}{b} = \frac{z}{c}\).

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)

Hoạt động 5 (SGK Cánh Diều - Tập 2 - Trang 69)

Hướng dẫn giải

a) Vì \({\Delta _1}\) song song với \({\Delta _2}\) nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) cùng phương.

Vì \({M_1}\) thuộc đường thẳng \({\Delta _1}\), \({M_2}\) thuộc đường thẳng \({\Delta _2}\)  nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{M_1}{M_2}} \) không cùng phương.

b) Vì \({\Delta _1}\) và \({\Delta _2}\) cắt nhau nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương. Ba vectơ \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) và \(\overrightarrow {{M_1}{M_2}} \) đồng phẳng.

c) Vì \({\Delta _1}\) và \({\Delta _2}\) chéo nhau nên \(\overrightarrow {{u_1}} \) và \(\overrightarrow {{u_2}} \) không cùng phương. Ba vectơ \(\overrightarrow {{u_1}} \), \(\overrightarrow {{u_2}} \) và \(\overrightarrow {{M_1}{M_2}} \) không đồng phẳng.

(Trả lời bởi Nguyễn Quốc Đạt)
Thảo luận (1)