Cho mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow{n}=\left(A;B;C\right)\). Tính sin của góc giữa mặt phẳng (P) và các trục tọa độ.
Cho mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow{n}=\left(A;B;C\right)\). Tính sin của góc giữa mặt phẳng (P) và các trục tọa độ.
Trong Ví dụ 10, tính góc giữa hai mặt phẳng (BCC'B') và (CDA'B').
Ví dụ 10. Trong không gian, cho hình lập phương ABCD.A'B'C'D'.

Thảo luận (1)Hướng dẫn giảiVì ADD’A’ là hình vuông nên \(AD' \bot A'D\). Vì \(CD \bot \left( {ADD'A'} \right)\) nên \(CD \bot AD'\). Do đó, \(AD' \bot \left( {CDA'B'} \right)\).
Mặt khác, \(C'D' \bot \left( {BCC'B'} \right)\), suy ra góc giữa hai mặt phẳng (BCC’B’) và (CDA’B’) là góc giữa hai đường thẳng AD’ và C’D’, đó là góc AD’C’.
Vì \(C'D' \bot \left( {ADD'A'} \right)\) nên \(C'D' \bot AD'\), suy ra . Do đó, góc giữa hai mặt phẳng (BCC’B’) và (CDA’B’) bằng 90 độ.
(Trả lời bởi Nguyễn Quốc Đạt)
Cho đường thẳng ∆ có phương trình tham số \(\left\{{}\begin{matrix}x=1-t\\y=3+2t\\z=-1+3t\end{matrix}\right.\) (t là tham số).
a) Chỉ ra tọa độ hai điểm thuộc đường thẳng ∆.
b) Điểm nào trong hai điểm C(6; – 7; – 16), D(– 3; 11; – 11) thuộc đường thẳng ∆?
Thảo luận (1)Hướng dẫn giảia) Với \(t = 0\) ta có: \(\left\{ \begin{array}{l}x = 1 - 0 = 1\\y = 3 + 2.0 = 3\\z = - 1 + 3.0 = - 1\end{array} \right.\) nên điểm \(A\left( {1;3; - 1} \right)\) thuộc đường thẳng \(\Delta \).
Với \(t = 1\) ta có: \(\left\{ \begin{array}{l}x = 1 - 1 = 0\\y = 3 + 2.1 = 5\\z = - 1 + 3.1 = 2\end{array} \right.\) nên điểm \(B\left( {0;5;2} \right)\) thuộc đường thẳng \(\Delta \).
b) Thay \(x = 6;y = - 7;z = - 16\) vào phương trình đường thẳng \(\Delta \) ta có:
\(\left\{ \begin{array}{l}6 = 1 - t\\ - 7 = 3 + 2t\\ - 16 = - 1 + 3t\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = - 5\\t = - 5\\t = - 5\end{array} \right. \Leftrightarrow t = - 5\)
Do đó, điểm \(C\left( {6; - 7; - 16} \right)\) thuộc đường thẳng \(\Delta \).
Thay \(x = - 3;y = 11;z = - 11\) vào phương trình đường thẳng \(\Delta \) ta có:
\(\left\{ \begin{array}{l} - 3 = 1 - t\\11 = 3 + 2t\\ - 11 = - 1 + 3t\end{array} \right.\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}t = 4\\t = 4\\t = \frac{{ - 10}}{3}\end{array} \right.\) (vô lí)
Do đó, điểm \(D\left( { - 3;11; - 11} \right)\) không thuộc đường thẳng \(\Delta \).
(Trả lời bởi Nguyễn Quốc Đạt)
Cho đường thẳng \(\Delta:\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z}{2}\). Tính côsin của góc giữa đường thẳng ∆ và các trục tọa độ.
Tính góc giữa đường thẳng ∆ và mặt phẳng (P) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):
a) \(\Delta:\left\{{}\begin{matrix}x=1+\sqrt{3}t\\y=2\\z=3+t\end{matrix}\right.\) (t là tham số) và (P): \(\sqrt{3}x+z-2=0\);
b) \(\Delta:\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=3+t\end{matrix}\right.\) (t là tham số) và (P): x + y + z - 4 = 0.
Thảo luận (1)Hướng dẫn giảia) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u = \left( {\sqrt 3 ;0;1} \right)\).
Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n = \left( {\sqrt 3 ;0;1} \right)\).
Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {\sqrt 3 .\sqrt 3 + 0.0 + 1.1} \right|}}{{\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {0^2} + {1^2}} }} = \frac{4}{4} = 1\) nên \(\left( {\left( P \right),\Delta } \right) = {90^o}\).
b) Đường thẳng \(\Delta \) có một vectơ chỉ phương \(\overrightarrow u = \left( {1; - 1;1} \right)\).
Mặt phẳng (P) có một vectơ pháp tuyến \(\overrightarrow n = \left( {1;1;1} \right)\).
Ta có: \(\sin \left( {\left( P \right),\Delta } \right) = \frac{{\left| {1.1 + \left( { - 1} \right).1 + 1.1} \right|}}{{\sqrt {{1^2} + {{\left( { - 1} \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{1}{3}\) nên \(\left( {\left( P \right),\Delta } \right) \approx {19^o}\).
(Trả lời bởi Nguyễn Quốc Đạt)
Đường thẳng đi qua điểm B(– 1; 3; 6) nhận \(\overrightarrow{u}=\left(2;-3;8\right)\) làm vectơ chỉ phương có phương trình chính tắc là:
A. \(\dfrac{x-1}{2}=\dfrac{y+3}{-3}=\dfrac{z+6}{8}\) B. \(\dfrac{x+1}{2}=\dfrac{y-3}{-3}=\dfrac{z-6}{8}\)
C. \(\dfrac{x+1}{-2}=\dfrac{y-3}{3}=\dfrac{z-6}{8}\) D. \(\dfrac{x+1}{2}=\dfrac{y-3}{3}=\dfrac{z-6}{8}\)
Thảo luận (1)Hướng dẫn giảiVì đường thẳng đi qua điểm \(B\left( { - 1;3;6} \right)\) nhận \(\overrightarrow u = \left( {2; - 3;8} \right)\) làm vectơ chỉ phương có phương trình chính tắc là: \(\frac{{x - \left( { - 1} \right)}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8} \Leftrightarrow \frac{{x + 1}}{2} = \frac{{y - 3}}{{ - 3}} = \frac{{z - 6}}{8}\)
Chọn B
(Trả lời bởi Nguyễn Quốc Đạt)
Trong không gian với hệ tọa độ Oxyz (đơn vị trên mỗi trục tọa độ là kilômét), một máy bay đang ở vị trí A(3,5; – 2; 0,4) và sẽ hạ cánh ở vị trí B(3,5; 5,5; 0) trên đường băng EG (Hình 37).

a) Viết phương trình đường thẳng AB.
b) Hãy cho biết góc trượt (góc giữa đường bay AB và mặt phẳng nằm ngang (Oxy)) có nằm trong phạm vi cho phép từ 2,5° đến 3,5° hay không.
c) Có một lớp mây được mô phỏng bởi một mặt phẳng (α) đi qua ba điểm M(5; 0; 0), N(0; – 5; 0), P(0; 0; 0,5). Tìm tọa độ của điểm C là vị trí mà máy bay xuyên qua đám mây để hạ cánh.
d) Tìm tọa độ của điểm D trên đoạn thẳng AB là vị trí mà máy bay ở độ cao 120 m.
e) Theo quy định an toàn bay, người phi công phải nhìn thấy điểm đầu E(3,5; 4,5; 0) của đường băng ở độ cao tối thiểu là 120 m. Hỏi sau khi ra khỏi đám mây, người phi công có đạt được quy định an toàn đó hay không? Biết rằng tầm nhìn của người phi công sau khi ra khỏi đám mây là 900 m (Nguồn: R.Larson and B.Edwards, Calculus 10e, Cengage, 2014).
Thảo luận (1)Hướng dẫn giảia) Đường thẳng AB đi qua điểm \(A\left( {3,5; - 2;0,4} \right)\) và nhận \(\overrightarrow {AB} = \left( {0;7,5; - 0,4} \right)\) làm một vectơ chỉ phương nên phương trình tham số của đường thẳng AB là:
\(\left\{ \begin{array}{l}x = 3,5\\y = - 2 + 7,5t\\z = 0,4 - 0,4t\end{array} \right.\) (t là tham số).
b) Mặt phẳng (Oxy) có một vectơ pháp tuyến là \(\overrightarrow k = \left( {0;0;1} \right)\).
Do đó, \(\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 + 7,5.0 + \left( { - 0,4} \right).1} \right|}}{{\sqrt {{0^2} + {{\left( { - 7,5} \right)}^2} + {{\left( { - 0,4} \right)}^2}} .\sqrt {{0^2} + {0^2} + {1^2}} }} = \frac{{4\sqrt {5641} }}{{5641}}\) nên \(\left( {AB,\left( {Oxy} \right)} \right) \approx {3^o}\). Do đó, góc trượt nằm trong phạm vi cho phép.
c) Mặt phẳng \(\left( \alpha \right)\) là mặt phẳng (MNP).
Ta có: \(\overrightarrow {MN} = \left( { - 5; - 5;0} \right),\overrightarrow {MP} = \left( { - 5;0;0,5} \right)\)
Ta có: \(\left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - 5}&0\\0&{0,5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - 5}\\{0,5}&{ - 5}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - 5}&{ - 5}\\{ - 5}&0\end{array}} \right|} \right) = \left( { - 2,5;2,5; - 25} \right)\)
Mặt phẳng (MNP) nhận \(\left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( { - 2,5;2,5; - 25} \right)\) làm một vectơ pháp tuyến.
Do đó, phương trình mặt phẳng \(\left( \alpha \right)\) là:
\( - 2,5\left( {x - 5} \right) + 2,5\left( {y - 0} \right) - 25\left( {z - 0} \right) \Leftrightarrow x - y + 10z - 5 = 0\)
Vì C là vị trí mà máy bay xuyên qua đám mấy để hạ cánh nên C là giao điểm của đường thẳng AB và mặt phẳng \(\left( \alpha \right)\).
Vì C thuộc AB nên \(C\left( {3,5; - 2 + 7,5t;0,4 - 0,4t} \right)\). Mà C thuộc mặt phẳng \(\left( \alpha \right)\) nên:
\(3,5 - \left( { - 2 + 7,5t} \right) + 10\left( {0,4 - 0,4t} \right) - 5 = 0\), suy ra \(t = \frac{9}{{23}}\). Do đó, \(C\left( {\frac{7}{2};\frac{{43}}{{46}};\frac{{28}}{{115}}} \right)\).
d) Vì D thuộc AB nên \(D\left( {3,5; - 2 + 7,5t';0,4 - 0,4t'} \right)\)
D là vị trí mà máy bay ở độ cao 120m, tức là khoảng cách từ D đến mặt phẳng (Oxy) bằng 120m và bằng 0,12km.
Ta có: \(d\left( {D,\left( {Oxy} \right)} \right) = \frac{{\left| {0,4 - 0,4t'} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = \left| {0,4 - 0,4t'} \right|\)
Do đó, \(\left| {0,4 - 0,4t'} \right| = 0,12 \Leftrightarrow \left[ \begin{array}{l}0,4 - 0,4t' = 0,12\\0,4 - 0,4t' = - 0,12\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t' = 0,7\\t' = 1,3\end{array} \right.\)
Với \(t' = 0,7\) ta có \(D\left( {3,5;3,25;0,12} \right)\).
Với \(t' = 1,3\) ta có \(D\left( {3,5;7,75; - 0,12} \right)\).
Vì D là vị trí độ cao của máy bay nên \(D\left( {3,5;3,25;0,12} \right)\).
e) Ta có: \(DE = \sqrt {{{\left( {3,5 - 3,5} \right)}^2} + {{\left( {4,5 - 3,25} \right)}^2} + {{\left( {0 - 0,12} \right)}^2}} \approx 1,256\left( {km} \right)\)
Vì tầm nhìn xa của phi công sau khi ra khỏi đám mây là \(900m = 0,9km < 1,256km\) nên người phi công đó không đạt được quy định an toàn bay.
(Trả lời bởi Nguyễn Quốc Đạt)
Tính góc giữa hai mặt phẳng (P1): x + y + 2z – 1 = 0 và (P2): 2x – y + z – 2 = 0.
Thảo luận (1)Hướng dẫn giảiMặt phẳng \(\left( {{P_1}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_1}} = \left( {1;1;2} \right)\); mặt phẳng \(\left( {{P_2}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}} = \left( {2; - 1;1} \right)\).
Do đó, \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {1.2 + 1\left( { - 1} \right) + 2.1} \right|}}{{\sqrt {{1^2} + {1^2} + {2^2}} \sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {1^2}} }} = \frac{1}{2}\) nên \(\left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = {60^o}\).
(Trả lời bởi Nguyễn Quốc Đạt)
Viết phương trình tham số và phương trình chính tắc của đường thẳng ∆ trong mỗi trường hợp sau:
a) ∆ đi qua điểm A(– 1; 3; 2) và có vectơ chỉ phương \(\overrightarrow{u}=\left(-2;3;4\right)\);
b) ∆ đi qua điểm M(2; – 1; 3) và N(3; 0; 4).
Thảo luận (1)Hướng dẫn giảia) Vì đường \(\Delta \) đi qua điểm \(A\left( { - 1;3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( { - 2;3;4} \right)\) nên:
+ Phương trình tham số: \(\left\{ \begin{array}{l}x = - 1 - 2t\\y = 3 + 3t\\z = 2 + 4t\end{array} \right.\) (t là tham số).
+ Phương trình chính tắc: \(\frac{{x + 1}}{{ - 2}} = \frac{{y - 3}}{3} = \frac{{z - 2}}{4}\).
b) Vì \(\Delta \) đi qua hai điểm \(M\left( {2; - 1;3} \right)\) và \(N\left( {3;0;4} \right)\) nên phương trình chính tắc của \(\Delta \) là:
\(\frac{{x - 2}}{{3 - 2}} = \frac{{y + 1}}{{0 + 1}} = \frac{{z - 3}}{{4 - 3}} \Leftrightarrow \frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 3}}{1}\).
Phương trình tham số của \(\Delta \): \(\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3 + t\end{array} \right.\) (t là tham số).
(Trả lời bởi Nguyễn Quốc Đạt)
Cho hai mặt phẳng (P1) và (P2). Lấy hai đường thẳng ∆1, ∆2 sao cho ∆1 ⊥ (P1), ∆2 ⊥ (P2) (Hình 31).

a) Nêu cách xác định góc giữa hai đường thẳng ∆1, ∆2.
b) Góc đó có phụ thuộc vào việc chọn hai đường thẳng ∆1, ∆2 như trên hay không?
Thảo luận (1)Hướng dẫn giảia) Vẽ hai đường thẳng \(\Delta _1',\Delta _2'\) cùng đi qua điểm I và lần lượt song song (hoặc trùng) với \({\Delta _1},{\Delta _2}\). Khi đó, góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) là góc giữa hai đường thẳng \(\Delta _1',\Delta _2'\).
b) Vì \({\Delta _1} \bot \left( {{P_1}} \right)\) và \(\Delta _1'\) song song (hoặc trùng) với \({\Delta _1}\) nên \(\Delta _1' \bot \left( {{P_1}} \right)\).
Tương tự ta có: \(\Delta _2' \bot \left( {{P_2}} \right)\).
Khi đó, góc giữa hai đường thẳng \(\Delta _1',\Delta _2'\) luôn là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng \(\left( {{P_1}} \right)\) và \(\left( {{P_2}} \right)\) nên góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) không phụ thuộc vào việc chọn hai đường thẳng \({\Delta _1},{\Delta _2}\).
(Trả lời bởi Nguyễn Quốc Đạt)