Giải phương trình: \(2x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3\sqrt{x-\frac{1}{x}}\left(x>0\right)\)
Giải phương trình: \(2x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3\sqrt{x-\frac{1}{x}}\left(x>0\right)\)
a,4^x.5^(-x^2)-1=0
b,5.6^x/2 - 4.3^x + 9.2^x=0
c,3.8^x + 4.12^x = 18^x + 2.27^x
Giải phương trình trên .a) <=> \(\frac{4^x}{5^{x^2}}=1\) <=> \(4^x=5^{x^2}\Leftrightarrow log4^x=log5^{x^2}\) <=> x.log4 = x2.log5 <=> x2. log 5 - x log4 = 0 <=> x. (x.log5 - log 4) = 0
<=> x = 0 hoặc x.log5 - log 4 = 0
x.log5 - log 4 = 0 <=> x = log4/log5 = \(log_54\)
b) \(\frac{5.2^{\frac{x}{2}}.3^{\frac{x}{2}}}{3^x}-\frac{4.3^x}{3^x}+\frac{9.2^x}{3^x}=0\)
<=> \(5.\left(\frac{2}{3}\right)^{\frac{x}{2}}-4+9.\left(\frac{2}{3}\right)^x=0\)
Đặt \(t=\left(\frac{2}{3}\right)^{\frac{x}{2}}\) ( t > 0) . Phương trình trở thành: 9t2 + 5t - 4 = 0 <=> t = -1 (Loại) hoặc t = 4/9 ( Thỏa mãn)
t = 4/9 => \(\left(\frac{2}{3}\right)^{\frac{x}{2}}=\frac{4}{9}=\left(\frac{2}{3}\right)^2\) <=> x/2 = 2 <=> x = 4
c) <=> \(\frac{3.8^x}{8^x}+\frac{4.12^x}{8^x}=\frac{18^x}{8^x}+\frac{2.27^x}{8^x}\)
<=> \(3+4.\left(\frac{3}{2}\right)^x=\left(\frac{3}{2}\right)^{2x}+2.\left(\frac{3}{2}\right)^{3x}\)
Đặt \(t=\left(\frac{3}{2}\right)^x\) ( t > 0) . Phương trình trở thành: 3 + 4t = t2 + 2t3
<=> 2t3 + t2 - 4t - 3 = 0 <=> (t +1)2. ( t - 3/2) = 0 <=> t = -1 ( Loại) hoặc t = 3/2 ( Thỏa mãn)
t = 3/2 => \(\left(\frac{3}{2}\right)^x=\frac{3}{2}\) <=> x = 1
Cho tam giác ABC vuông tại A,BC=15,G là trọng tâm tam giác khi đó giá trị \(\left|\vec{GB}+\vec{GC}\right|\) bằng bao nhiêu
A.5 B.4 C.8 D.2
G là trọng tâm tam giác ABC => \(\vec{GA}+\vec{GB}+\vec{GC}=\vec{0}\) => \(\vec{GB}+\vec{GC}=-\vec{GA}\) => \(\left|\vec{GB}+\vec{GC}\right|=\left|-\vec{GA}\right|=GA\)
Tam giác ABC vuông tại nên có trung tuyến ứng với cạnh huyền bằng 1/2 cạnh huyền BC ; Mà G là trong tâm tam giác nên GA = 2/3 . (1/2. BC) = BC/3 = 5
=> \(\left|\vec{GB}+\vec{GC}\right|=5\)
Đáp án A
giai pt sau : \(\left(cos\frac{x}{4}-3sinx\right).sinx+\left(1+sin\frac{x}{4}-3cosx\right).cosx=0\)
Biến đổi pt trên như sau:
sinx.cosx/4 + cosx.sinx/4 - 3(sin2x + cos2x) + cosx = 0
sin(x + x/4) + cosx = 3
sin5x/4 + cosx = 3
Vì sin5x/4 \(\le\) 1 và cosx \(\le\) 1. Do đó sin5x/4 + cosx \(\le\) 2. Vì vậy pt trên vô nghiệm.
giai pt : \(\sqrt{1-cosx}=sinx,x\in\left[\pi;3\pi\right]\)
Điều kiện : sinx \(\ge\) 0
PT <=> 1 - cosx = sin2x <=> 1 - cosx = 1 - cos2x <=> (1 - cosx) - (1 - cos x).(1 + cosx) = 0
<=> (1 - cosx). cosx = 0 <=> cos x =1 hoặc cosx = 0
+) cosx = 0 <=> x = \(\frac{\pi}{2}+k\pi\) ; x \(\in\left[\pi;3\pi\right]\) => \(\pi\le\frac{\pi}{2}+k\pi\le3\pi\) <=> 1 \(\le\) 1/2 + k \(\le\) 3 <=> 1/2 \(\le\) k \(\le\) 2,5 ; k nguyên nên k = 1;2
=> x = \(\frac{3\pi}{2};\frac{5\pi}{2}\) đối chiếu đk sinx \(\ge\) 0 => x = \(\frac{5\pi}{2}\)
+) cosx = 1 <=> x = \(k2\pi\) ; x \(\in\left[\pi;3\pi\right]\) => x = \(2\pi\) (T/m đk sinx\(\ge\) 0)
Vậy PT có nghiệm là x = \(\frac{5\pi}{2}\); x = \(2\pi\)
Giải phương trình \(2x\sqrt{x-2}+x^2+\frac{1}{x}=3x+\frac{13}{2}\)
CHo a,b,c không âm t/m a+b+c=1
Tìm GTNN \(M=3\left(a^2b^2+b^2c^2+c^2a^2\right)+3\left(ab+bc+ca\right)+2\sqrt{a^2+b^2+c^2}\)
cho hệ phương trình
x-my=2-4m
mx+y=3m+1
1, chứng minh rằng hệ pt luôn có nghiệm với mọi giá trị của m
2,giả sử\(x_0\);\(y_o\)là nghiệm của hệ phương trình
chứng minh rằng \(x^2_0+y^2_0-5\left(x_o+y_0\right)\)luôn bằng một hằng số
a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM
giải pt :
1) 4x3-3x=1/2
2) 8x(2x2-1).(8x4-8x2+1)=1
3) x3-3x=\(\sqrt{x+2}\)$\sqrt{x+2}$
Giải phương trình x2 - 4x + 4 = \(\sqrt{-3x+6}\)
\(\text{ĐKXĐ: }-3x+6\ge0\)
\(\Leftrightarrow-3x\ge-6\)
\(\Leftrightarrow x\le2\)
\(x^2-4x+4=\sqrt{-3x+6}\)
\(\Leftrightarrow\left(x-2\right)^2=\sqrt{-3.\left(x-2\right)}\)
\(\Leftrightarrow\left(x-2\right)^4=-3.\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)^3=-3\)
\(\Leftrightarrow\left(x-2\right)^3=\left(\sqrt[3]{-3}\right)^3\)
\(\Leftrightarrow x-2=\sqrt[3]{-3}\)
\(\Leftrightarrow x=\sqrt[3]{-3}+2\)\(\left(\text{thỏa mãn}\right)\)
\(\text{Vậy }x=\sqrt[3]{-3}+2\)