Bài 11. Nguyên hàm

Mở đầu (SGK Kết nối tri thức với cuộc sống - Trang 4)

Hoat động 1 (SGK Kết nối tri thức với cuộc sống - Trang 4)

Hướng dẫn giải

a) \(F'\left( x \right) = \left( {\frac{1}{3}{x^3} + x} \right)' = {x^2} + 1\)

b) \(F'\left( x \right) = f\left( x \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 1 (SGK Kết nối tri thức với cuộc sống - Trang 5)

Hướng dẫn giải

a) Ta có: \(F'\left( x \right) = \left( {\frac{1}{2}{x^2} + \ln x} \right)' = x + \frac{1}{x}\)

Vì \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc \(\left( {0; + \infty } \right)\) nên F(x) là một nguyên hàm của f(x) trên \(\left( {0; + \infty } \right)\).

b) \(G'\left( x \right) = \left( {\frac{{{x^2}}}{2} - \ln x} \right)' = x - \frac{1}{x}\)

G(x) không phải là một nguyên hàm của f(x) trên \(\left( {0; + \infty } \right)\) vì với \(x = 1\) ta có:

\(G'\left( 1 \right) = 0 \ne 2 = f\left( 1 \right)\).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 2 (SGK Kết nối tri thức với cuộc sống - Trang 5)

Hướng dẫn giải

a) Ta có: \(F'\left( x \right) = {x^3} = f\left( x \right)\) nên F(x) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\).

b) Ta có: \(G'\left( x \right) = {x^3} = f\left( x \right)\) nên G(x) là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 2 (SGK Kết nối tri thức với cuộc sống - Trang 6)

Hướng dẫn giải

Vì \(\left( {\frac{{{x^4}}}{4}} \right)'= {x^3}\) nên \(F\left( x \right) = \frac{{{x^4}}}{4}\) là một nguyên hàm của hàm số \(f\left( x \right) = {x^3}\) trên \(\mathbb{R}\).

Do đó, \(\int {{x^3}dx}  = \frac{{{x^4}}}{4} + C\)

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 3 (SGK Kết nối tri thức với cuộc sống - Trang 6)

Hướng dẫn giải

a) Vì F(x) là một nguyên hàm của f(x) trên K nên \(F'\left( x \right) = f\left( x \right)\) nên \(kF'\left( x \right) = kf\left( x \right)\) (với k khác 0). Do đó, kF(x) là một nguyên hàm của hàm số kf(x) trên K.

b) Ta có: \(\int {kf\left( x \right)dx}  = k\int {f\left( x \right)dx} \)

(Trả lời bởi datcoder)
Thảo luận (1)

Luyện tập 3 (SGK Kết nối tri thức với cuộc sống - Trang 7)

Hướng dẫn giải

a) Ta có: \(F'\left( x \right) = {\left( {\frac{{{x^{n + 1}}}}{{n + 1}}} \right)'} = \frac{{\left( {n + 1} \right){x^n}}}{{n + 1}} = {x^n} = f\left( x \right)\) nên hàm số F(x) là một nguyên hàm của hàm số f(x). Do đó, \(\int {{x^n}dx}  = \frac{{{x^{n + 1}}}}{{n + 1}} + C\).

b) \(\int {k{x^n}dx}  = k\int {{x^n}dx}  = \frac{{k.{x^{n + 1}}}}{{n + 1}} + C\).

(Trả lời bởi datcoder)
Thảo luận (1)

Hoạt động 4 (SGK Kết nối tri thức với cuộc sống - Trang 7)

Luyện tập 4 (SGK Kết nối tri thức với cuộc sống - Trang 7)

Hướng dẫn giải

a) \(\int {\left( {3{x^2} + 1} \right)dx}  = 3\int {{x^2}dx + \int {1dx = {x^3} + x + C} } \);

b) \(\int {{{\left( {2x - 1} \right)}^2}dx}  = \int {\left( {4{x^2} - 4x + 1} \right)dx = 4\int {{x^2}dx - 4\int {xdx + \int {dx = \frac{{4{x^3}}}{3} - 2{x^2} + x + C} } } } \).

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng (SGK Kết nối tri thức với cuộc sống - Trang 8)

Hướng dẫn giải

Ta có: \(\int {{M_R}\left( x \right)dx = \int {\left( {300 - 0,1x} \right)dx = 300\int {dx - 0,1\int {xdx = 300x - 0,05{x^2} + C} } } } \)

Do đó, \(R\left( x \right) = 300x - 0,05{x^2} + C\)

Ta có: \(R\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(R\left( x \right) = 300x - 0,05{x^2}\)

Doanh thu của công ty khi đã bán 1 000 con chíp là: \(R\left( {1000} \right) = 300.1000 - 0,{05.1000^2} = 250\;000\) (triệu đồng)

(Trả lời bởi datcoder)
Thảo luận (1)