Bằng cách viết lại các hàm số sau dưới dạng hàm số lũy thừa y = xα (x > 0), hãy tính đạo hàm của các hàm số sau với x > 0: \(y=\dfrac{1}{x^4};y=x^{\sqrt{2}};y=\dfrac{1}{\sqrt[3]{x}}\).
Bằng cách viết lại các hàm số sau dưới dạng hàm số lũy thừa y = xα (x > 0), hãy tính đạo hàm của các hàm số sau với x > 0: \(y=\dfrac{1}{x^4};y=x^{\sqrt{2}};y=\dfrac{1}{\sqrt[3]{x}}\).
a) Với α ≠ −1, tính đạo hàm của hàm số \(y=\dfrac{x^{\alpha+1}}{\alpha+1}\left(x>0\right).\)
b) Cho hàm số y = ln|x| (x ≠ 0). Tính đạo hàm của hàm số này trong hai trường hợp: x > 0 và x < 0.
Thảo luận (1)Hướng dẫn giảia) Vì \(y' = {\left( {\frac{{{x^{\alpha + 1}}}}{{\alpha + 1}}} \right)'} = \frac{{\left( {\alpha + 1} \right){x^\alpha }}}{{\alpha + 1}} = {x^\alpha }\) với mọi \(x > 0\), \(\alpha \ne - 1\).
b) Ta có: \(y' = \left( {\ln \left| x \right|} \right)' = \frac{1}{{\left| x \right|}}\).
Với \(x > 0\) thì \(y' = \frac{1}{x}\).
Với \(x < 0\) thì \(y' = \frac{1}{{ - x}}\).
(Trả lời bởi datcoder)
Tìm:
a) \(\int\dfrac{1}{x^4}dx;\) b) \(\int x\sqrt{x}dx\) (x > 0); c) \(\int\left(\dfrac{3}{x}-5\sqrt[3]{x}\right)dx\) (x > 0).
Thảo luận (1)Hướng dẫn giảia) \(\int {\frac{1}{{{x^4}}}dx} = \int {{x^{ - 4}}dx} = \frac{{{x^{ - 4 + 1}}}}{{ - 4 + 1}} + C = \frac{{{x^{ - 3}}}}{{ - 3}} + C = \frac{{ - 1}}{{3{x^3}}} + C\);
b) \(\int {x\sqrt x dx = } \int {{x^{\frac{3}{2}}}dx = } \frac{{{x^{\frac{3}{2} + 1}}}}{{\frac{3}{2} + 1}} + C = \frac{2}{5}{x^2}\sqrt x + C\);
c) \(\int {\left( {\frac{3}{x} - 5\sqrt[3]{x}} \right)dx = \int {\frac{3}{x}dx - \int {5\sqrt[3]{x}} dx = 3\int {\frac{1}{x}dx - 5\int {{x^{\frac{1}{3}}}} dx = 3\ln \left| x \right| - 5.\frac{{{x^{\frac{4}{3}}}}}{{\frac{4}{3}}} + C} } } \)
\( = 3\ln \left| x \right| - \frac{{15x\sqrt[3]{x}}}{4} + C\).
(Trả lời bởi datcoder)
a) Tính đạo hàm của các hàm số sau và nêu kết quả tương ứng vào bảng dưới đây.
b) Sử dụng kết quả ở câu a, tìm nguyên hàm của các hàm số cho trong bảng dưới đây.
Thảo luận (1)Hướng dẫn giải
Tìm:
a) \(\int\left(3\cos x-4\sin x\right)dx;\) b) \(\int\left(\dfrac{1}{\cos^2x}-\dfrac{1}{\sin^2x}\right)dx.\)
Thảo luận (1)Hướng dẫn giảia) \(\int {\left( {3\cos x - 4\sin x} \right)dx} = 3\int {\cos x} dx - 4\int {\sin x} dx = 3\sin x + 4\cos x + C\);
b) \(\int {\left( {\frac{1}{{{{\cos }^2}x}} - \frac{1}{{{{\sin }^2}x}}} \right)dx} = \int {\frac{1}{{{{\cos }^2}x}}} dx - \int {\frac{1}{{{{\sin }^2}x}}} dx = \tan x + \cot x + C\).
(Trả lời bởi datcoder)
a) Tính đạo hàm của các hàm số sau và nêu kết quả tương ứng vào bảng dưới đây.
b) Sử dụng kết quả ở câu a, tìm nguyên hàm của các hàm số cho trong bảng dưới đây.
Thảo luận (1)Hướng dẫn giải
Tìm:
a) \(\int4^xdx;\) b) \(\int\dfrac{1}{e^x}dx;\) c) \(\int\left(2.3^x-\dfrac{1}{3}.7^x\right)dx.\)
Thảo luận (1)Hướng dẫn giảia) \(\int {{4^x}dx} = \frac{{{4^x}}}{{\ln 4}} + C\);
b) \(\int {\frac{1}{{{e^x}}}dx} = \int {{{\left( {\frac{1}{e}} \right)}^x}dx} = \frac{{{{\left( {\frac{1}{e}} \right)}^x}}}{{\ln \frac{1}{e}}} + C = - {e^{ - x}} + C\);
c) \(\int {\left( {{{2.3}^x} - \frac{1}{3}{{.7}^x}} \right)dx} = 2\int {{3^x}} dx - \frac{1}{3}\int {{7^x}} dx = \frac{{{{2.3}^x}}}{{\ln 3}} - \frac{{{7^x}}}{{3\ln 7}} + C\).
(Trả lời bởi datcoder)
Trong mỗi trường hợp sau, hàm số F(x) có là một nguyên hàm của hàm số f(x) trên khoảng tương ứng không? Vì sao?
a) F(x) = xlnx và f(x) = 1 + lnx trên khoảng (0; +∞);
b) F(x) = esinx và f(x) = ecosx trên ℝ.
Thảo luận (1)Hướng dẫn giảia) Ta có: \(F'\left( x \right) = \left( {x\ln x} \right)' = \ln x + \frac{x}{x} = \ln x + 1\). Do đó, \(F'\left( x \right) = f\left( x \right)\) với mọi x thuộc \(\left( {0; + \infty } \right)\). Do đó, F(x) là một nguyên hàm của hàm số f(x) trên khoảng \(\left( {0; + \infty } \right)\).
b) Ta có: \(F'\left( x \right) = \left( {{e^{\sin x}}} \right)' = \cos x.{e^{\sin x}}\).
Hàm số F(x) không là một nguyên hàm của hàm số f(x) trên \(\mathbb{R}\) vì \(F'\left( {\frac{\pi }{2}} \right) = 0 \ne 1 = f\left( 1 \right)\)
(Trả lời bởi datcoder)
Tìm nguyên hàm của các hàm số sau:
a) f(x) = 3x2 + 2x – 1; b) f(x) = x3 – x;
c) f(x) = (2x + 1)2; d) \(f\left(x\right)=\left(2x-\dfrac{1}{x}\right)^2\).
Thảo luận (1)Hướng dẫn giảia) \(\int {\left( {3{x^2} + 2x - 1} \right)} dx = 3\int {{x^2}} dx + 2\int x dx - \int 1 dx = {x^3} + {x^2} - x + C\)
b) \(\int {\left( {{x^3} - x} \right)} dx = \int {{x^3}} dx - \int x dx = \frac{{{x^4}}}{4} - \frac{{{x^2}}}{2} + C\)
c) \(\int {{{\left( {2x + 1} \right)}^2}} dx = \int {\left( {4{x^2} + 4x + 1} \right)} dx = 4\int {{x^2}} dx + 4\int x dx + \int 1 dx = \frac{{4{x^3}}}{3} + 2{x^2} + x + C\)
d) \(\int {{{\left( {2x - \frac{1}{x}} \right)}^2}} dx = \int {\left( {4{x^2} - 4 + \frac{1}{{{x^2}}}} \right)} dx = 4\int {{x^2}} dx + \int {{x^{ - 2}}} dx - 4\int 1 dx = \frac{{4{x^3}}}{3} - \frac{1}{x} - 4x + C\)
(Trả lời bởi datcoder)
Tìm:
a) \(\int\left(3\sqrt{x}+\dfrac{1}{\sqrt[3]{x}}\right)dx;\) b) \(\int\left(7x^2-3\right)dx\) (x > 0);
c) \(\int\dfrac{\left(2x+1\right)^2}{x^2}dx;\) d) \(\int\left(2^x+\dfrac{3}{x^2}\right)dx.\)
Thảo luận (1)Hướng dẫn giảia) \(\int {\left( {3\sqrt x + \frac{1}{{\sqrt[3]{x}}}} \right)} dx = 3\int {{x^{\frac{1}{2}}}} dx + \int {{x^{\frac{{ - 1}}{3}}}} dx = 2x\sqrt x + \frac{3}{2}\sqrt[3]{{{x^2}}} + C\)
b) \(\int {\sqrt x \left( {7{x^2} - 3} \right)} dx = \int {\left( {7{x^{\frac{5}{2}}} - 3{x^{\frac{1}{2}}}} \right)dx = } 7\int {{x^{\frac{5}{2}}}} dx - 3\int {{x^{\frac{1}{2}}}} dx = 2{x^3}\sqrt x - 2x\sqrt x + C\)
c) \(\int {\frac{{{{\left( {2x + 1} \right)}^2}}}{{{x^2}}}} dx = \int {\frac{{4{x^2} + 4x + 1}}{{{x^2}}}} dx = \int 4 dx + 4\int {\frac{1}{x}} dx + \int {{x^{ - 2}}} dx = 4x + 4\ln \left| x \right| - \frac{1}{x} + C\)
d) \(\int {\left( {{2^x} + \frac{3}{{{x^2}}}} \right)} dx = \int {{2^x}} dx + 3\int {{x^{ - 2}}} dx = \frac{{{2^x}}}{{\ln 2}} - \frac{3}{x} + C\)
(Trả lời bởi datcoder)