Tìm:
a) \(\int\left(2\cos x-\dfrac{3}{\sin^2x}\right)dx;\) b) \(\int4\sin^2\dfrac{x}{2}dx;\)
c) \(\int\left(\sin\dfrac{x}{2}-\cos\dfrac{x}{2}\right)^2dx;\) d) \(\int\left(x+\tan^2x\right)dx.\)
Tìm:
a) \(\int\left(2\cos x-\dfrac{3}{\sin^2x}\right)dx;\) b) \(\int4\sin^2\dfrac{x}{2}dx;\)
c) \(\int\left(\sin\dfrac{x}{2}-\cos\dfrac{x}{2}\right)^2dx;\) d) \(\int\left(x+\tan^2x\right)dx.\)
Cho hàm số y = f(x) xác định trên khoảng (0; +∞). Biết rằng, \(f'\left(x\right)2x+\dfrac{1}{x^2}\) với mọi \(x\in\left(0;+\infty\right)\) và f(1) = 1. Tính giá trị f(4).
Thảo luận (1)Hướng dẫn giảiVì \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) nên
\(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\left( {2x + \frac{1}{{{x^2}}}} \right)dx} = 2\int {xdx} + \int {{x^{ - 2}}dx} = {x^2} - \frac{1}{x} + C\)
Mà \(f\left( 1 \right) = 1\) nên \(1 - 1 + C = 1\), suy ra \(C = 1\). Do đó, hàm số \(f\left( x \right) = {x^2} - \frac{1}{x} + 1\)
Vậy \(f\left( 4 \right) = {4^2} - \frac{1}{4} + 1 = \frac{{67}}{4}\)
(Trả lời bởi datcoder)
Cho hàm số y = f(x) có đồ thị là (C). Xét điểm M(x; f(x)) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).
Thảo luận (1)Hướng dẫn giảiVì hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) nên \(f'\left( x \right) = {\left( {x - 1} \right)^2}\)
Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {{{\left( {x - 1} \right)}^2}dx} = \int {\left( {{x^2} - 2x + 1} \right)dx} = \frac{{{x^3}}}{3} - {x^2} + x + C\)
Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên M(0; 0).
Do đó ta có: \(f\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(f\left( x \right) = \frac{{{x^3}}}{3} - {x^2} + x\).
(Trả lời bởi datcoder)
Một viên đạn được bắn thẳng đứng lên trên từ mặt đất. Giả sử tại thời điểm t giây (coi t = 0 là thời điểm viên đạn được bắn lên), vận tốc của nó được cho bởi v(t) = 160 – 9,8t (m/s). Tìm độ cao của viên đạn (tính từ mặt đất):
a) Sau t = 5 giây;
b) Khi nó đạt độ cao lớn nhất (làm tròn kết quả đến chữ số thập phân thứ nhất).
Thảo luận (1)Hướng dẫn giảiGọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.
Vì \(v\left( t \right) = S'\left( t \right)\) nên độ cao S(t) là một nguyên hàm của hàm số vận tốc v(t).
Do đó, \(S\left( t \right) = \int {v\left( t \right)dt} = \int {\left( {160 - 9,8t} \right)dt} = 160t - 4,9{t^2} + C\)
Theo giả thiết, \(S\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(S\left( t \right) = - 4,9{t^2} + 160t\) (m)
a) Độ cao của viên đạn sau 5 giây là: \(S\left( 5 \right) = - 4,{9.5^2} + 160.5 = 677,5\left( m \right)\)
b) Ta có: \(S\left( t \right) = - 4,9{t^2} + 160t = \frac{{ - 1}}{{10}}\left( {49{t^2} - 2.7.\frac{{800}}{7}t + \frac{{640000}}{{49}}} \right) + \frac{{64000}}{{49}}\)
\( = \frac{{ - 1}}{{10}}{\left( {7t - \frac{{800}}{7}} \right)^2} + \frac{{64000}}{{49}} \le \frac{{64000}}{{49}}\;\forall t \in \mathbb{R}\)
Do đó, viên đạn đạt độ cao lớn nhất là: \(\frac{{64000}}{{49}}m \approx 1306,1m\) khi \(t = \frac{{800}}{{49}}\) giây
(Trả lời bởi datcoder)