Bài 11. Nguyên hàm

Bài 4.4 (SGK Kết nối tri thức với cuộc sống - Trang 11)

Hướng dẫn giải

a) \(\int {\left( {2\cos x - \frac{3}{{{{\sin }^2}x}}} \right)} dx = 2\int {\cos x} dx - 3\int {\frac{1}{{{{\sin }^2}x}}} dx = 2\sin x + 3\cot x + C\)

b) \(\int {4{{\sin }^2}\frac{x}{2}} dx = \int {2\left( {1 - \cos x} \right)} dx = 2\int {dx - 2\int {\cos x} dx = 2x - 2\sin x + C} \)

c) \(\int {{{\left( {\sin \frac{x}{2} - \cos \frac{x}{2}} \right)}^2}} dx = \int {\left( {{{\sin }^2}\frac{x}{2} + {{\cos }^2}\frac{x}{2} - 2\sin \frac{x}{2}.\cos \frac{x}{2}} \right)} dx = \int {\left( {1 - \sin x} \right)} dx\)

\( = \int {dx}  - \int {\sin x} dx = x + \cos x + C\)

d) \(\int {\left( {x + {{\tan }^2}x} \right)} dx = \int {xdx}  + \int {\left( {\frac{1}{{{{\cos }^2}x}} - 1} \right)dx}  = \frac{{{x^2}}}{2} + \tan x - x + C\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 4.5 (SGK Kết nối tri thức với cuộc sống - Trang 11)

Hướng dẫn giải

Vì \(f'\left( x \right) = 2x + \frac{1}{{{x^2}}}\) nên

\(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\left( {2x + \frac{1}{{{x^2}}}} \right)dx}  = 2\int {xdx}  + \int {{x^{ - 2}}dx}  = {x^2} - \frac{1}{x} + C\)

Mà \(f\left( 1 \right) = 1\) nên \(1 - 1 + C = 1\), suy ra \(C = 1\). Do đó, hàm số \(f\left( x \right) = {x^2} - \frac{1}{x} + 1\)

Vậy \(f\left( 4 \right) = {4^2} - \frac{1}{4} + 1 = \frac{{67}}{4}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 4.6 (SGK Kết nối tri thức với cuộc sống - Trang 11)

Hướng dẫn giải

Vì hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) nên \(f'\left( x \right) = {\left( {x - 1} \right)^2}\)

Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {{{\left( {x - 1} \right)}^2}dx}  = \int {\left( {{x^2} - 2x + 1} \right)dx}  = \frac{{{x^3}}}{3} - {x^2} + x + C\)

Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên M(0; 0).

Do đó ta có: \(f\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(f\left( x \right) = \frac{{{x^3}}}{3} - {x^2} + x\).

(Trả lời bởi datcoder)
Thảo luận (1)

Bài 4.7 (SGK Kết nối tri thức với cuộc sống - Trang 11)

Hướng dẫn giải

Gọi S(t) là độ cao của viên đạn bắn lên từ mặt đất sau t giây kể từ thời điểm đạn được bắn lên.

Vì \(v\left( t \right) = S'\left( t \right)\) nên độ cao S(t) là một nguyên hàm của hàm số vận tốc v(t).

Do đó, \(S\left( t \right) = \int {v\left( t \right)dt}  = \int {\left( {160 - 9,8t} \right)dt}  = 160t - 4,9{t^2} + C\)

Theo giả thiết, \(S\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(S\left( t \right) =  - 4,9{t^2} + 160t\) (m)

a) Độ cao của viên đạn sau 5 giây là: \(S\left( 5 \right) =  - 4,{9.5^2} + 160.5 = 677,5\left( m \right)\)

b) Ta có: \(S\left( t \right) =  - 4,9{t^2} + 160t = \frac{{ - 1}}{{10}}\left( {49{t^2} - 2.7.\frac{{800}}{7}t + \frac{{640000}}{{49}}} \right) + \frac{{64000}}{{49}}\)

\( = \frac{{ - 1}}{{10}}{\left( {7t - \frac{{800}}{7}} \right)^2} + \frac{{64000}}{{49}} \le \frac{{64000}}{{49}}\;\forall t \in \mathbb{R}\)

Do đó, viên đạn đạt độ cao lớn nhất là: \(\frac{{64000}}{{49}}m \approx 1306,1m\) khi \(t = \frac{{800}}{{49}}\) giây

(Trả lời bởi datcoder)
Thảo luận (1)