Bài 11. Nguyên hàm

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Cho hàm số y = f(x) có đồ thị là (C). Xét điểm M(x; f(x)) thay đổi trên (C). Biết rằng, hệ số góc của tiếp tuyến của đồ thị (C) tại M là kM = (x – 1)2 và điểm M trùng với gốc tọa độ khi nó nằm trên trục tung. Tìm biểu thức f(x).

datcoder
27 tháng 10 lúc 17:30

Vì hệ số góc của tiếp tuyến của đồ thị (C) tại M là \({k_M} = {\left( {x - 1} \right)^2}\) nên \(f'\left( x \right) = {\left( {x - 1} \right)^2}\)

Ta có: \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {{{\left( {x - 1} \right)}^2}dx}  = \int {\left( {{x^2} - 2x + 1} \right)dx}  = \frac{{{x^3}}}{3} - {x^2} + x + C\)

Vì điểm M trùng với gốc tọa độ khi nó nằm trên trục tung nên M(0; 0).

Do đó ta có: \(f\left( 0 \right) = 0\) nên \(C = 0\). Do đó, \(f\left( x \right) = \frac{{{x^3}}}{3} - {x^2} + x\).