Bài 1: tìm x
6x2-2x(3x+3/2)=9
Bài 1. Tìm x, biết
a) (x+4)2-x2(x+12)=16
c) (x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1)=28
d) (x-2)3-(x+5)(x2-5x+25)-6x2=11
Bài 2. Rút gọn các biểu thức sau:
A = (x+1)3+(x-1)3
B = (x-3)3-(x+3)(x2-3x+9)+(3x-1)(3x+1)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
Tìm x,biết:
a)6x2-(2x+5).(3x-2)=-12
b)(x+3).(x2-3x+9)-x.(x2+2)=12-5x
c)x2-25=6x-9
\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)
\(\Leftrightarrow-11x=-22\)
hay x=2
b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)
\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)
\(\Leftrightarrow x=-5\)
Bài 2 : Tìm x (đưa về nhân tử)
f) x(2x – 9) – 4x + 18 = 0
g) 4x(x – 1000) – x + 1000 = 0
h) 2x(x – 4) – 6x2(– x + 4) = 0
i) 2x(x – 3) + x2 – 9 = 0
j) 9x – 6x2 + x3 = 0
f: Ta có: \(x\left(2x-9\right)-4x+18=0\)
\(\Leftrightarrow\left(2x-9\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=2\end{matrix}\right.\)
g: Ta có: \(4x\left(x-1000\right)-x+1000=0\)
\(\Leftrightarrow\left(x-1000\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1000\\x=\dfrac{1}{4}\end{matrix}\right.\)
f. x(2x - 9) - 4x + 18 = 0
<=> x(2x - 9) - 2(2x - 9) = 0
<=> (x - 2)(2x - 9) = 0
<=> \(\left[{}\begin{matrix}x-2=0\\2x-9=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=2\\x=\dfrac{9}{2}\end{matrix}\right.\)
g. 4x(x - 1000) - x + 1000 = 0
<=> 4x(x - 1000) - (x - 1000) = 0
<=> (4x - 1)(x - 1000) = 0
<=> \(\left[{}\begin{matrix}4x-1=0\\x-1000=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=1000\end{matrix}\right.\)
h. 2x(x - 4) - 6x2(-x + 4) = 0
<=> 2x(x - 4) + 6x2(x - 4) = 0
<=> (2x + 6x2)(x - 4) = 0
<=> 2x(1 + 3x)(x - 4) = 0
<=> \(\left[{}\begin{matrix}2x=0\\1+3x=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=\dfrac{-1}{3}\\x=4\end{matrix}\right.\)
i. 2x(x - 3) + x2 - 9 = 0
<=> 2x(x - 3) + (x - 3)(x + 3) = 0
<=> (2x + x + 3)(x - 3) = 0
<=> (3x + 3)(x + 3) = 0
<=> \(\left[{}\begin{matrix}3x+3=0\\x+3=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
j. 9x - 6x2 + x3 = 0
<=> x(9 - 6x + x2) = 0
<=> x(3 - x)2 = 0
<=> \(\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
4x(x – 1000) – x + 1000 = 0
(4x-1)(x-1000) =0
⇔x=1/4 hoặc 1000
Bài 1: Rút gọn biểu thức:
a) 2x(3x-5)-6x2 b) (x+3)(1-x)+(x-2)(x+2) c) (3x+1)2-(1+3x)(6x-2)+(3x-1)2
Bài 2: Phân tích đa thức thành nhân tử:
a) 9x2-1 b) 2(x-1)+x2-x c) 3x2+14x-5
Bài 3: Tìm x biết:
a) 2x(x-1)-2x2=4 b) x(x-3)-(x+2)(x-1)=5 c) 4x2-25+(2x+5)2=0
Bài 4: Cho tam giác ABC , có D là trung điểm đoạn thẳng BC , E là trung điểm của AB lấy điểm F đối xứng với điểm D qua E .
a) Chứng minh tứ giác FADB là hình bình hành.
b) Kẻ FG vuông với AB ; DH vuông với AB ; (G;HϵAB). Chứng minh FD=AC;\(\widehat{BFH}\)=\(\widehat{ADG}\).
c) Vẽ điểm Q đối xứng với điểm C qua A , DQ cắt đoạn AB tại điểm I , M là trung điểm AD.
Chứng minh F , M , I thẳng hàng
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
Bài 1. Thực hiện các phép nhân a) 4x(3x – 1) – 2(3x + 1) – (x + 3)
b) 3x(4x – 3) – (2x – 1)(6x + 5)
c) 4x(3x2 – x) – (2x + 3)(6x2 – 3x + 1)
d) (x – 2)(x + 2)(x2 + 4)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)
Tìm x
a)(2x+1)2-4(x+2)2 =9
b)(3x-1)2 +2(x+3)2 +11(x+1)(1-x)=6
c)(x+1)3 - x2 (x+3)=2
d)(x-2)3 -x(x+1)(x-1)+6x2 =5
e)(x-3)(x2 +3x +9)-x(x+4)(x-4)=5
g)(x-2)3 -(x+5)(x2 -5x+25)+6x2 =11
\(\left(2x+1\right)2-4\left(x+2\right)2=9\)
\(4x+2-8x-16=9\)
\(4x-8x=9+16-2\)
\(-4x=23\)
\(x=-\frac{23}{4}\)
a, \(\left(2x+1\right)2-4\left(x+2\right)2=9\)
\(\Leftrightarrow4x+2-8x-16=0\Leftrightarrow-4x-14=0\Leftrightarrow x=-\frac{7}{2}\)
b, \(\left(x+1\right)3-2x\left(x+3\right)=2\)
\(\Leftrightarrow3x+3-2x^2-6x=2\Leftrightarrow-3x+1-2x^2=0\)
Bài 2: Tìm x
a) (x-2)2-(2x+3)2=0
b) 9.(2x+1)2-4.(x+1)2=0
c) x3-6x2+9x=0
d) x2.(x+1)-x.(x+1)+x.(x-1)=0
a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)
\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)
b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)
\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)
\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)
Do \(\left(x+1\right)^2+1>0\)
\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Tìm x :
a) (x + 2) - x(x + 3) = 2
b) (x + 2)(x -2) - (x + 1)2 = 7
c) 6x2 - (2x + 1)(3x - 2) = 1
d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2
e) 6(x - 1)( x + 1) - (2x - 1)(3x + 2) + 3 = 0
a (x + 2) - x(x + 3) = 2
x + 2 - x(x + 3) - 2 = 0
x + x(x + 3) = 0
x(1 + x + 3) = 0
x(x + 4) = 0
x = 0 hoặc x + 4 = 0
*) x + 4 = 0
x = -4
Vậy x = -4; x = 0
b) (x + 2)(x - 2) - (x + 1)² = 7
x² - 4 - x² - 2x - 1 = 7
-2x - 5 = 7
-2x = 7 + 5
-2x = 12
x = 12 : (-2)
x = -6
c) 6x² - (2x + 1)(3x - 2) = 1
6x² - 6x² + 4x - 3x + 2 = 1
x + 2 = 1
x = 1 - 2
x = -1
d) (x + 2)(x + 3) - (x - 2)(x + 1) = 2
x² + 3x + 2x + 6 - x² - x + 2x + 2 = 2
6x + 8 = 2
6x = 2 - 8
6x = -6
x = -6 : 6
x = -1
e) 6(x - 1)(x + 1) - (2x - 1)(3x + 2) + 3 = 0
6x² - 6 - 6x² - 4x + 3x + 2 + 3 = 0
-x - 1 = 0
x = -1
Bài 1: Rút gọn
C) (x2 - 3) (x2 +3) - 5x2 (x + 1)2 - (x2 - 3x) ( x2 - 2x) + 4x (x + 2)2
D) -6x2 (x + 5)2 - ( x - 3)2 + (x2 - 2) (2x2 + 1) - 4x2 ( 3x - 4)2
A) -2x(3x+2)(3x-2)+5(x+2)2 - (x-1)(2x+1)(2x+1)
= -2x(9x2-4)+5(x2+4x+4) - (x-1)(4x2-1)
= -18x3+8x+5x2+20x+20-(4x3-x-4x2+1)
= -18x3+5x2+28x+20-4x3+x+4x2+1
= -22x3+9x2+29x+21
B) (7x-8)(7x+8)-10(2x+3)2+5x(3x-2)2-4x(x-5)2
= 49x2 - 64 -10(4x2+ 12x + 3) + 5x(9x2 - 12x +4) - 4x(x2 - 10x +25)
= 49x2 - 64 -40x2 - 120x - 30 + 45x3 - 60x2 - 20x - 4x3 + 40x2 -100x
= 41x3 -11x2 -240x -94
C) \(\left(x^2-3\right)\left(x^2+3\right)-5x^2\left(x+1\right)^2-\left(x^2-3x\right)\left(x^2-2x\right)+4x\left(x+2\right)^2\)
\(\left(x^4-9\right)-5x^2\left(x^2+2x+1\right)-\left(x^4-2x^3-3x^3+6x^2\right)+4x\left(x^2+4x+4\right)\)
\(x^4-9-5x^4-10x^3-5x^2-x^4+5x^3-6x^2+4x^3+16x^2+16x\)
\(-5x^4-x^3+5x^2+20x-9\)
D) \(-6x^2\left(x+5\right)^2-\left(x-3\right)^2+\left(x^2-2\right)\left(2x^2+1\right)-4x^2\left(3x-4\right)^2\)
\(-6x^2\left(x^2+10x+25\right)-\left(x^2-6x+9\right)+2x^4-3x^2-2-4x^2\left(9x^2-24x+16\right)\)
\(-6x^4-60x^3+150x^2-x^2+6x-9+2x^4-3x^2-2-36x^4+96x^3-64x^2\)
\(-40x^4+36x^3+82x^2+6x-11\)