Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Đức Thành
Xem chi tiết
Gia Huy
31 tháng 7 2023 lúc 21:55

ĐK: \(x\in N;x\ne4\)

a

Ta thấy trong 2 trường hợp \(\sqrt{x}-2>0\) và \(\sqrt{x}-2< 0\) thì Max A xảy ra trong trường hợp \(\sqrt{x}-2>0\Rightarrow\sqrt{x}-2>2\Rightarrow x>4\)

Mà \(x\in N\Rightarrow x\in\left\{5;6;7;....\right\}\Rightarrow x\ge5\Rightarrow\sqrt{x}\ge\sqrt{5}\)

\(\Rightarrow\sqrt{x}-2\ge\sqrt{5}-2\\ \Rightarrow\dfrac{3}{\sqrt{x}-2}\le\dfrac{3}{\sqrt{5}-2}\\ \Rightarrow A\le\dfrac{3}{\sqrt{5}-2}=6+3\sqrt{5}\)

Vậy Max A \(=6+3\sqrt{5}\) khi \(x=5\left(thỏa.mãn\right)\)

Gia Huy
31 tháng 7 2023 lúc 21:59

b

ĐK:\(x\in N;x\ne4\)

Min A xảy ra khi \(\sqrt{x}-2< 0\) \(\Leftrightarrow\sqrt{x}< 2\Leftrightarrow0\le x< 4\)

Mà \(x\in N\Rightarrow x\in\left\{0;1;2;3\right\}\)

x0123
A     \(-\dfrac{3}{2}\)\(-3\)\(-\dfrac{6+3\sqrt{2}}{2}\)\(-6-3\sqrt{3}\)

 

Vậy min A \(=-6-3\sqrt{3}\) khi \(x=3\left(thỏa.mãn\right)\)

 

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 4 2023 lúc 19:00

loading...  

Nott mee
Xem chi tiết
Trên con đường thành côn...
11 tháng 12 2021 lúc 10:41

Cách 1:

ĐKXĐ:\(x>0\)

Ta có:

\(A-2\sqrt{3}=\dfrac{x+3}{\sqrt{x}}-2\sqrt{3}\)

\(=\dfrac{x+3-2\sqrt{3}.\sqrt{x}}{\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\)

Ta có:

\(\left\{{}\begin{matrix}\left(\sqrt{x}-\sqrt{3}\right)^2\ge0\\\sqrt{x}>0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left(\sqrt{x}-\sqrt{3}\right)^2}{\sqrt{x}}\ge0\)

\(\Leftrightarrow A-2\sqrt{3}\ge0\)\(\Leftrightarrow A\ge2\sqrt{3}\)

Vậy \(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}-\sqrt{3}=0\Leftrightarrow x=3\left(tm\right)\)

Trên con đường thành côn...
11 tháng 12 2021 lúc 10:44

Cách 2:

ĐKXĐ: \(x>0\)

Ta có:

\(A=\dfrac{x+3}{\sqrt{x}}=\sqrt{x}+\dfrac{3}{\sqrt{x}}\)

Áp dụng BĐT Cauchy ta có:

\(\sqrt{x}+\dfrac{3}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{3}{\sqrt{x}}}=2\sqrt{3}\)

\(\Leftrightarrow A\ge2\sqrt{3}\)

Vậy\(A_{min}=2\sqrt{3}\), đạt được khi và chỉ khi \(\sqrt{x}=\dfrac{3}{\sqrt{x}}\Leftrightarrow x=3\left(tm\right)\)

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 5:13

Sửa đề: Tìm giá trị lớn nhất

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)

\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}< =-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>\(C< =0\forall x\) thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Lizy
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 12 2023 lúc 22:19

Sửa đề: Tìm x để C đạt GTLN

 

ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)

\(C=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

\(=\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}=1+\dfrac{2}{\sqrt{x}-2}\)

\(\sqrt{x}-2>=-2\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}< =-\dfrac{2}{2}=-1\forall x\) thỏa mãn ĐKXĐ

=>\(\dfrac{2}{\sqrt{x}-2}+1< =-1+1=0\forall x\) thỏa mãn ĐKXĐ

=>C<=0 với mọi x thỏa mãn ĐKXĐ

Dấu '=' xảy ra khi x=0

Vậy: \(C_{max}=0\) khi x=0

Bùi Anh Tuấn
Xem chi tiết
Nguyễn Đức Trí
23 tháng 8 2023 lúc 22:53

a) \(P=\dfrac{x^2-\sqrt[]{x}}{x+\sqrt[]{x}+1}-\dfrac{2x+\sqrt[]{x}}{\sqrt[]{x}}+\dfrac{2\left(x+\sqrt[]{x}-2\right)}{\sqrt[]{x}-1}\)

Điều kiện xác định \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\\sqrt[]{x}-1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left[\left(\sqrt[]{x}\right)^3-1\right]}{x+\sqrt[]{x}+1}-\dfrac{\sqrt[]{x}\left(2\sqrt[]{x}+1\right)}{\sqrt[]{x}}+\dfrac{2\left(\sqrt[]{x}-1\right)\left(\sqrt[]{x}+2\right)}{\sqrt[]{x}-1}\)

\(\Rightarrow P=\dfrac{\sqrt[]{x}\left(\sqrt[]{x}-1\right)\left(x+\sqrt[]{x}+1\right)}{x+\sqrt[]{x}+1}-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=\sqrt[]{x}\left(\sqrt[]{x}-1\right)-\left(2\sqrt[]{x}+1\right)+2\left(\sqrt[]{x}+2\right)\)

\(\Rightarrow P=x-\sqrt[]{x}-2\sqrt[]{x}-1+2\sqrt[]{x}+4\)

\(\Rightarrow P=x-\sqrt[]{x}+3\)

Nguyễn Đức Trí
23 tháng 8 2023 lúc 23:12

b) \(A=\dfrac{P}{2012\sqrt[]{x}}=\dfrac{x-\sqrt[]{x}+3}{2012\sqrt[]{x}}\)\(\)

\(=\dfrac{x-\sqrt[]{x}+\dfrac{1}{4}-\dfrac{1}{4}+3}{2012\sqrt[]{x}}\)

\(=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}{2012\sqrt[]{x}}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{\dfrac{11}{4}}{2012\sqrt[]{x}}=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\)

Ta lại có  \(\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}\ge0,\forall x\ne0\)

\(\dfrac{1}{\sqrt[]{x}}>0\Rightarrow\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{4.2012}=\dfrac{11}{8048}\)

\(\Rightarrow A=\dfrac{\left(\sqrt[]{x}-\dfrac{1}{2}\right)^2}{2012\sqrt[]{x}}+\dfrac{11}{4.2012\sqrt[]{x}}\ge\dfrac{11}{8048}\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt[]{x}=1\Leftrightarrow x=1\)

Vậy \(GTNN\left(A\right)=\dfrac{11}{8048}\left(tạix=1\right)\)

Xyz OLM
24 tháng 8 2023 lúc 0:24

\(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x+\sqrt{x}-2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right).\left(\sqrt{x}+2\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2.\left(\sqrt{x}+2\right)\)

\(=x-\sqrt{x}+3\)

b) \(\dfrac{P}{2012\sqrt{x}}=\dfrac{x-\sqrt{x}+3}{2012\sqrt{x}}=\dfrac{\sqrt{x}}{2012}-\dfrac{1}{2012}+\dfrac{3}{2012\sqrt{x}}\)

\(=\left(\dfrac{\sqrt{x}}{2012}+\dfrac{3}{2012\sqrt{x}}\right)-\dfrac{1}{2012}\)

\(\ge2\sqrt{\dfrac{\sqrt{x}.3}{2012^2\sqrt{x}}}-\dfrac{1}{2012}\) (BĐT Cauchy)

\(=\dfrac{2\sqrt{3}}{2012}-\dfrac{1}{2012}=\dfrac{2\sqrt{3}-1}{2012}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{x}}{2012}=\dfrac{3}{2012\sqrt{x}}\Leftrightarrow x=3\)(tm)

Dương Thanh Ngân
Xem chi tiết
santa
29 tháng 12 2020 lúc 13:05

\(ĐKXĐ:\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

\(P\left(x\right)=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(P\left(x\right)=x-\sqrt{x}-2\sqrt{x}-2+2\sqrt{x}+2\)

\(P\left(x\right)=x-\sqrt{x}\)

Ta có : \(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{x-\sqrt{x}}{2020\sqrt{x}}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{2020\sqrt{x}}=\dfrac{\sqrt{x}-1}{2020}\)

Để \(\dfrac{P\left(x\right)}{2020\sqrt{x}}min\Leftrightarrow\dfrac{\sqrt{x}-1}{2020}min\Leftrightarrow\sqrt{x}-1\) min (vì 2020 > 0)

Lại có : \(\sqrt{x}-1\ge-1\forall x\)

Dấu "=" xảy ra <=> x = 0

Vậy Min\(\dfrac{P\left(x\right)}{2020\sqrt{x}}=\dfrac{-1}{2020}\Leftrightarrow x=0\)

nguyenhoangtung
Xem chi tiết
Toru
3 tháng 9 2023 lúc 20:34

\(\dfrac{M}{N}=\left(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{3-\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) (ĐKXĐ: \(x\ge0;x\ne4;x\ne9\))

\(=\left[\dfrac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)\(=\left[\dfrac{2\sqrt{x}-9}{\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)}-\dfrac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\left[\dfrac{2\sqrt{x}-9-x+9+x-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\dfrac{2\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

\(=\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{\sqrt{x}+2}\)

\(=\dfrac{2}{\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{M}{N}+1=\dfrac{2}{\sqrt{x}+2}+1\)

Ta thấy: \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}+2\ge2\forall x\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\forall x\)

\(\Rightarrow\dfrac{2}{\sqrt{x}+2}+1\le2\forall x\)

\(\Rightarrow Max_P=2\Leftrightarrow\dfrac{2}{\sqrt{x}+2}+1=2\)

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}=1\)

\(\Leftrightarrow\sqrt{x}+2=2\)

\(\Leftrightarrow\sqrt{x}=0\)

\(\Leftrightarrow x=0\left(tm\right)\)

#Urushi

Nguyễn thành Đạt
3 tháng 9 2023 lúc 20:38

Bạn tự rút gọn nha .

c) Ta có : \(P\text{=}\dfrac{M}{N}+1\text{=}\dfrac{2}{\sqrt{x}+2}+1\)

Để P có giá trị lớn nhất.

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}cóGTLN\)

\(\Leftrightarrow\sqrt{x}+2cóGTNN\)

Mà : \(\sqrt{x}+2\ge2\)

\(\Rightarrow\) Để : \(\left(\sqrt{x}+2\right)_{min}\) \(\Leftrightarrow\sqrt{x}\text{=}0\Leftrightarrow x\text{=}0\)

Vậy............

illumina
Xem chi tiết
Tô Mì
26 tháng 6 2023 lúc 10:40

Ta có : \(P=3A+2B\)

\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{3}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+3}{\sqrt{x}+2}.\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+2\right)-1}{\sqrt{x}+2}=2-\dfrac{1}{\sqrt{x}+2}\)

Do \(x\ge0\Rightarrow\sqrt{x}+2\ge0\)

\(\Rightarrow-\dfrac{1}{\sqrt{x}+2}\ge-1\)

\(\Rightarrow P=2-\dfrac{1}{\sqrt{x}+2}\ge-1+2=1.\)

Vậy : \(MinP=1.\) Dấu đẳng thức xảy ra khi và chỉ khi \(x=0.\)