(a) *Xét xe thứ nhất, thời gian đi nửa quãng đường đầu: \(t_{11}=\dfrac{\dfrac{L}{2}}{v_1}=\dfrac{L}{2v_1}\), thời gian đi nửa quãng đường còn lại: \(t_{12}=\dfrac{\dfrac{L}{2}}{v_2}=\dfrac{L}{2v_2}\).
Suy ra vận tốc trung bình: \(\overline{v_1}=\dfrac{L}{t_{11}+t_{12}}=\dfrac{L}{\dfrac{L}{2v_1}+\dfrac{L}{2v_2}}=\dfrac{2v_1v_2}{v_1+v_2}\).
*Xét xe thứ 2, quãng đường đi trong nửa thời gian đầu: \(s_{21}=\dfrac{v_1t_2}{2}\), quãng đường đi trong nửa thời gian còn lại: \(s_{22}=\dfrac{v_2t_2}{2}\).
Suy ra vận tốc trung bình: \(\overline{v_2}=\dfrac{s_{21}+s_{22}}{t_2}=\dfrac{\dfrac{v_1t_2}{2}+\dfrac{v_2t_2}{2}}{t_2}=\dfrac{v_1+v_2}{2}\).
(b) Thời gian xe thứ nhất đi: \(t_1=\dfrac{L}{\overline{v_1}}=\dfrac{L\left(v_1+v_2\right)}{2v_1v_2}\).
Thời gian xe thứ hai đi: \(t_2=\dfrac{L}{\overline{v_2}}=\dfrac{2L}{v_1+v_2}\).
Xét hiệu: \(\Delta t=t_1-t_2=L\left(\dfrac{v_1+v_2}{2v_1v_2}-\dfrac{2}{v_1+v_2}\right)\)
\(=\dfrac{L\left[\left(v_1+v_2\right)^2-4v_1v_2\right]}{v_1v_2\left(v_1+v_2\right)}=\dfrac{L\left(v_1-v_2\right)^2}{v_1v_2\left(v_1+v_2\right)}>0\).
Suy ra \(t_1>t_2\) nên xe thứ 2 đến B trước một khoảng \(\Delta t=\dfrac{L\left(v_1-v_2\right)^2}{v_1v_2\left(v_1+v_2\right)}\).
(c) Ta có: \(t_2-t_{11}=\dfrac{2L}{v_1+v_2}-\dfrac{L}{2v_1}=\dfrac{L\left(3v_1-v_2\right)}{2v_1\left(v_1+v_2\right)}\).
(*) Nếu \(3v_1\ge v_2\) thì sau khi xe thứ 2 đến B, xe thứ nhất đã đi được hơn nửa quãng đường, khoảng cách hai xe lúc xe 2 đến B là:
\(d=\dfrac{L}{2}-v_2\left(t_2-t_{11}\right)=\dfrac{L}{2}-\dfrac{Lv_2\left(3v_1-v_2\right)}{2v_1\left(v_1+v_2\right)}\)
\(\Rightarrow d=\dfrac{L\left(v_1-v_2\right)^2}{2v_1\left(v_1+v_2\right)}\).
(**) Nếu \(3v_1< v_2\) thì khi xe thứ 2 đến B, xe thứ nhất chưa đi được nửa quãng đường AB. Khoảng cách hai xe lúc xe 2 đến B là:
\(d=L-v_1t_2=L-\dfrac{2Lv_1}{v_1+v_2}=\dfrac{L\left(v_2-v_1\right)}{v_1+v_2}\).
(d) Theo đề thì \(\Delta t=\dfrac{L\left(v_1-v_2\right)^2}{v_1v_2\left(v_1+v_2\right)}\left(1\right)\).
Xét trường hợp (*), khoảng cách là \(d=\dfrac{L\left(v_1-v_2\right)^2}{2v_1\left(v_1+v_2\right)}\left(2\right)\).
Từ (1) và (2), có được: \(v_2=\dfrac{2d}{\Delta t}=\dfrac{2\cdot90}{1,5}=120\left(km/h\right)\), thay vào (1), có được: \(\left[{}\begin{matrix}v_1\approx41,88\left(km/h\right)\left(N\right)\\v_1\approx3438,11\left(km/h\right)\left(L\right)\end{matrix}\right.\).
Xét trường hợp (**), khoảng cách là \(d=\dfrac{L\left(v_2-v_1\right)}{v_1+v_2}\left(3\right)\).
Từ (1) và (3), suy ra: \(v_1=\dfrac{v_2d}{v_2\Delta t+1}\), thay vào (3), tìm được:
\(v_2=\dfrac{\dfrac{d\left(d+L\right)}{L-d}-1}{\Delta t}=\dfrac{\dfrac{90\left(90+200\right)}{200-90}-1}{1,5}\approx157,52\left(km/h\right)\left(L\right)\).
Vậy: \(\left\{{}\begin{matrix}v_1\approx41,88\left(km/h\right)\\v_2=120\left(km/h\right)\end{matrix}\right.\).