Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
๖ۣۜMavis❤๖ۣۜZeref
Xem chi tiết
2611
21 tháng 12 2022 lúc 10:48

`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`

`<=>(2+1)^n=59049`

`<=>3^n=59049`

`<=>n=10 =>(2x^2+1/[x^3])^10`

Xét số hạng thứ `k+1:`

    `C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`

 `=C_10 ^k 2^[10-k] x^[20-5k]`

Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`

Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`

 

Trần
Xem chi tiết
Nguyễn Phương HÀ
15 tháng 8 2016 lúc 12:45

ta sử dụng:

\(\left(1+2\right)^n=C^0_n+2C^1_n+..+2^nC^n_n\)

<=> \(3^n=243\)

<=> \(3^n=3^5\)

=> n=5

vậy n =5

 

camcon
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2023 lúc 21:47

\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)

Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)

Dễ dàng thấy \(S_1=3.2^n\)

\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)

Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)

Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)

Nên:

\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)

Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)

Hiếu Nghĩa Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2020 lúc 19:47

Xét khai triển:

\(\left(3-x\right)^n=C_n^0.3^n+C_n^1.3^{n-1}.\left(-x\right)^1+...+C_n^n\left(-x\right)^n\)

Thế \(x=1\) vào ta được:

\(2^n=3^nC_n^0-3^{n-1}C_n^1+...+\left(-1\right)^nC_n^n\)

\(\Rightarrow2^n=2048=2^{11}\Rightarrow n=11\)

Khách vãng lai đã xóa
Hiếu Nghĩa Nguyễn
8 tháng 2 2020 lúc 18:52

Akai Haruma giúp em với

Khách vãng lai đã xóa
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 16:25

Xét khai triển:

\(\left(1+x\right)^n=C_n^0+C_n^1x+C_n^2x^2+...+C_n^nx^n\)

\(\Leftrightarrow x\left(1+x\right)^n=C_n^0x+C_n^1x^2+C_n^2x^3+...+C_n^nx^{n+1}\)

Đạo hàm 2 vế:

\(\left(1+x\right)^n+nx\left(1+x\right)^{n-1}=C_n^0+2C_n^1x+3C_n^2x^2+...+\left(n+1\right)C_n^nx^n\)

Thay \(x=1\)

\(\Rightarrow2^n+n.2^{n-1}=1+2C_n^1+3C_n^2+...+\left(n+1\right)C_n^n\)

\(\Rightarrow2^{n-1}\left(2+n\right)-1=111\)

\(\Rightarrow2^{n-1}\left(2+n\right)=112=2^4.7\)

\(\Rightarrow n=5\)

\(\left(x^2+\dfrac{2}{x}\right)^5=\sum\limits^5_{k=0}C_5^kx^{2k}.2^{5-k}.x^{k-5}=\sum\limits^5_{k=0}C_5^k.2^{5-k}.x^{3k-5}\)

\(3k-5=4\Rightarrow k=3\Rightarrow\) hệ số: \(C_5^3.2^2\)

Mai Anh
Xem chi tiết
Khôi Bùi
29 tháng 3 2022 lúc 15:02

Với k \(\in\)N* ; ta có : \(kC_n^k=k.\dfrac{n!}{\left(n-k\right)!k!}=\dfrac{n!}{\left(n-k\right)!\left(k-1\right)!}=\dfrac{n\left(n-1\right)!}{\left[n-1-\left(k-1\right)\right]!\left(k-1\right)!}=nC_{n-1}^{k-1}\)

Khi đó : \(C_n^1+2C_n^2+...+nC^n_n\)  = \(\Sigma^n_{k=1}nC^{k-1}_{n-1}\)  

\(n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)  \(=n.\left(1+1\right)^{n-1}=n.2^{n-1}\) ( đpcm )

Mai Anh
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2022 lúc 17:04

Ta có:

\(k.C_n^k=k.\dfrac{n!}{\left(n-k\right)!.k!}=n.\dfrac{\left(n-1\right)!}{\left(n-1-\left(k-1\right)\right)!\left(k-1\right)!}=n.C_{n-1}^{k-1}\)

Do đó:

\(1C_n^1+2C_n^2+...+nC_n^n\)

\(=n.C_{n-1}^0+nC_{n-1}^1+...+n\left(C_{n-1}^{n-1}\right)\)

\(=n\left(C_{n-1}^0+C_{n-1}^1+...+C_{n-1}^{n-1}\right)\)

\(=n.2^{n-1}\)

Mai Anh
Xem chi tiết
Akai Haruma
29 tháng 3 2022 lúc 0:44

Số hạng nào hả bạn? 

Mai Anh
Xem chi tiết
Kaito Kid
29 tháng 3 2022 lúc 15:02

undefined

tham khảo