\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)
Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)
Dễ dàng thấy \(S_1=3.2^n\)
\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)
Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)
Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)
Nên:
\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)
Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)