Ôn tập chương II

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
camcon

Cho n là số tự nhiên. Thu gọn biểu thức S = \(3C^0_n+7C^1_n+11C^2_n+...+\left(4n+3\right)C^n_n\)  theo n 

Nguyễn Việt Lâm
27 tháng 2 2023 lúc 21:47

\(S=3C_0^n+\left(4+3\right)C_n^1+\left(4.2+3\right)C_n^2+...+\left(4n+3\right)C_n^n=S_1+S_2\)

Với \(S_1=3\left(C_n^0+C_n^1+...+C_n^n\right)\)

Dễ dàng thấy \(S_1=3.2^n\)

\(S_2=4.C_n^1+4.2C_n^2+...+4.n.C_n^n=4\left(1C_n^1+2C_n^2+...+nC_n^n\right)\)

Nhận thấy tất cả các số hạng \(S_2\) đều có dạng \(k.C_n^k\)

Ta có: \(k.C_n^k=k.\dfrac{n!}{k!\left(n-k\right)!}=\dfrac{n!}{\left(k-1\right)!\left(n-k\right)!}=n.\dfrac{\left(n-1\right)!}{\left(k-1\right)!.\left[\left(n-1\right)-\left(k-1\right)\right]!}=n.C_{n-1}^{k-1}\)

Nên:

\(S_2=4\left(nC_{n-1}^0+nC_{n-1}^1+...+nC_{n-1}^{n-1}\right)=4n.2^{n-1}=2n.2^n\)

Vậy \(S=S_1+S_2=\left(2n+3\right).2^n\)


Các câu hỏi tương tự
An Nhiên
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Nguyễn Trung Quân
Xem chi tiết
anhduc1501
Xem chi tiết
NGUYEN THI DIEP
Xem chi tiết
Tuyết Phạm
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Trịnh Diệu Linh
Xem chi tiết
Tôi Không Biết
Xem chi tiết