a) \(\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=3x^3-10x^2-7x+30\)
b) \(\sqrt{x^2+x+2}+\sqrt{x^2-x+2}=2x+1\)
c) \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
cho biểu thức A=\([\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}.\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}]:\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)
a)Tìm điều kiện xác định
b)Rút gọn A
c)Biết xy=16 tìm các giá trị của x,y để A có giá trị nhỏ nhất, tìm giá trị đó.
Cho x>0 , y>0. Tìm giá trị nhỏ nhất của biểu thức
A= \(3\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)-8\left(\frac{x}{y}+\frac{y}{x}\right)+10\)
Mn giúp mk bài này vs.
Xét tính chẵn-lẻ: f(x)=\(\frac{\left|6-2x\right|-\left|6+2x\right|}{x^2}\)
Tìm TXĐ của hs y=\(\frac{1+\sqrt{6-3x}}{x\sqrt{x+1}}\)
Tập xác định của hàm số: \(y=\sqrt{x+3+2\sqrt{x+2}}+\sqrt{2-x^2+2\sqrt{1-x^2}}\) có dạng \(\left[a;b\right]\). Tìm a+b
Tìm tập xác định của các hàm số :
a. \(y=\dfrac{2}{x+1}+\sqrt{x+3}\)
b. \(y=\sqrt{2-3x}-\dfrac{1}{\sqrt{1-2x}}\)
c. \(y=\left\{{}\begin{matrix}\dfrac{1}{x+3};\left(x\ge1\right)\\\sqrt{2-x};\left(x< 1\right)\end{matrix}\right.\)
a. \(\sqrt{5-x}\) + \(\sqrt{8+x}\) - \(\sqrt{\left(5-x\right)\left(8+x\right)}\) = -1
b. x - \(\sqrt{2x^2}-3x+4\) = 8
Tìm tập xác định của hàm số y=\(\left\{{}\begin{matrix}\frac{1}{x-3}với...x\ge1\\\sqrt{2-x}với...x< 1\end{matrix}\right.\)
\(\left[\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right]:\left[\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right]\)
Rút Gọn Giúp