Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:31

+) Ta có: \(AB \bot AC \Rightarrow \overrightarrow {AB}  \bot \overrightarrow {AC}  \Rightarrow \overrightarrow {AB} .\overrightarrow {AC}  = 0\)

+) \(\overrightarrow {AC} .\overrightarrow {BC}  = \left| {\overrightarrow {AC} } \right|.\left| {\overline {BC} } \right|.\cos \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right)\)

Ta có: \(BC = \sqrt {A{B^2} + A{C^2}}  = \sqrt 2  \Leftrightarrow \sqrt {2A{C^2}}  = \sqrt 2 \)\( \Rightarrow AC = 1\)

\( \Rightarrow \overrightarrow {AC} .\overrightarrow {BC}  = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)

+) \(\overrightarrow {BA} .\overrightarrow {BC}  = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = 1.\sqrt 2 .\cos \left( {45^\circ } \right) = 1\)

Thư Trần
Xem chi tiết
Tô Mì
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2023 lúc 20:39

vecto x=vecto AB+vecto AC-vecto BC

=vecto AB+vecto AC+vecto CB

=vecto AB+vecto AB

=2*vecto AB

=>|vecto x|=2*3a=6a

Sách Giáo Khoa
Xem chi tiết
Anh Triêt
30 tháng 3 2017 lúc 14:40

Ta có: CB= a√2; = 450

Vậy = -. = -||: ||. cos450 = -a.a√2.

=> = -a2

Rồng Xanh
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 12 2020 lúc 13:42

Gọi D là chân đường phân giác của góc A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AC}{AC}=\dfrac{4}{5}\Rightarrow5\overrightarrow{BD}=4\overrightarrow{DC}\)

\(\Rightarrow5\overrightarrow{BD}=4\overrightarrow{DB}+4\overrightarrow{BC}\Rightarrow\overrightarrow{BD}=\dfrac{4}{9}\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}=\overrightarrow{AB}+\dfrac{4}{9}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\dfrac{5}{9}\overrightarrow{AB}+\dfrac{4}{9}\overrightarrow{AC}\)

\(\Rightarrow M\) trùng D hay M là chân đường phân giác của góc A trên BC

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 12 2021 lúc 17:49

1.

\(\overrightarrow{AB}.\overrightarrow{BC}=\overrightarrow{AB}.\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}.\left(-\overrightarrow{AB}\right)+\overrightarrow{AB}.\overrightarrow{AC}=-AB^2=-25\)

2.

\(\overrightarrow{AB}.\overrightarrow{BD}=\overrightarrow{AB}\left(\overrightarrow{BA}+\overrightarrow{AD}\right)=-\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AD}=-AB^2+0=-64\)

Got many jams
Xem chi tiết
Hồng Phúc
17 tháng 12 2020 lúc 12:41

a, \(\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{BC}^2\)

\(\Leftrightarrow AC^2+AB^2-2\overrightarrow{AB}.\overrightarrow{AC}=BC^2\)

\(\Leftrightarrow2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=\dfrac{AB^2+AC^2-BC^2}{2}=\dfrac{5^2+8^2-7^2}{2}=20\)

b, \(2\overrightarrow{CA}.\overrightarrow{CB}=CA^2+CB^2-BC^2=CA^2\)

\(\Rightarrow\overrightarrow{CA}.\overrightarrow{CB}=\dfrac{CA^2}{2}=\dfrac{8^2}{2}=32\)

Akai Haruma
17 tháng 12 2020 lúc 14:45

Lời giải:

a) 

\(\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{BC}\)

\(\Rightarrow (\overrightarrow{AC}-\overrightarrow{AB})^2=\overrightarrow{BC}^2\Leftrightarrow AB^2+AC^2-2\overrightarrow{AC}.\overrightarrow{AB}=BC^2\)

\(\Leftrightarrow 2\overrightarrow{AB}.\overrightarrow{AC}=AB^2+AC^2-BC^2\) (đpcm)

Ta có:

\(\overrightarrow{AB}.\overrightarrow{AC}=\frac{AB^2+AC^2-BC^2}{2}=\frac{5^2+8^2-7^2}{2}=20\)

\(\cos \angle A=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\frac{20}{5.8}=\frac{1}{2}\)

\(\Rightarrow \angle A=60^0\)

b) 

Tương tự phần a, \(\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-AB^2}{2}=\frac{8^2+7^2-5^2}{2}=44\)

Trương Thu Huyền
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 3 2019 lúc 13:18

Ta có \(\overrightarrow{AB}.\overrightarrow{CB}=AB.BC.cos\widehat{B}=AB.BC.\dfrac{AB}{BC}=AB^2=4\)

\(\Rightarrow AB=2\)

\(\overrightarrow{AC}.\overrightarrow{BC}=AC.BC.cos\widehat{C}=AC.BC.\dfrac{AC}{BC}=AC^2=9\)

\(\Rightarrow AC=3\)

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{2^2+3^2}=\sqrt{13}\)

Nguyễn Việt Lâm
6 tháng 3 2019 lúc 22:57

ádhgkjhg

Nguyễn Mina
Xem chi tiết
Akai Haruma
20 tháng 12 2021 lúc 13:06

Lời giải:

$\overrightarrow{CM}.\overrightarrow{BN}=(\overrightarrow{CA}+\overrightarrow{AM})(\overrightarrow{BA}+\overrightarrow{AN})$

$=\overrightarrow{CA}.\overrightarrow{BA}+\overrightarrow{CA}.\overrightarrow{AN}+\overrightarrow{AM}.\overrightarrow{BA}+\overrightarrow{AM}.\overrightarrow{AN}$

$=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{CA}.\frac{1}{4}\overrightarrow{AC}+\frac{1}{5}\overrightarrow{AB}.\overrightarrow{BA}+\frac{1}{5}\overrightarrow{AB}.\frac{1}{4}\overrightarrow{AC}$

$=\frac{21}{20}\overrightarrow{AB}.\overrightarrow{AC}-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}\cos A.|\overrightarrow{AB}|.|\overrightarrow{AC}|-\frac{1}{4}AC^2-\frac{1}{5}AB^2$

$=\frac{21}{20}.\frac{1}{2}.5.8-\frac{1}{4}.8^2-\frac{1}{5}.5^2=0$

$\Rightarrow CM\perp BN$

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 20:37

Đặt \(A = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} \)

\(= \dfrac{1}{2}\sqrt { A{B^2}.A{C^2}- {{\left(|{\overrightarrow {AB}| .|\overrightarrow {AC}|. \cos BAC} \right)}^2}} \)

\(\begin{array}{l} \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - {{\left( {AB.AC.\cos A} \right)}^2}} \\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2} - A{B^2}.A{C^2}.{{\cos }^2}A }\\ \Leftrightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}\left( {1 - {{\cos }^2}A} \right)} \end{array}\)

Mà \(1 - {\cos ^2}A = {\sin ^2}A\)

\( \Rightarrow A = \dfrac{1}{2}\sqrt {A{B^2}.A{C^2}.{{\sin }^2}A} \)

\( \Leftrightarrow A = \dfrac{1}{2}.AB.AC.\sin A\) (Vì \({0^o} < \widehat A < {180^o}\) nên \(\sin A > 0\))

Do đó \(A = {S_{ABC}}\) hay \({S_{ABC}} = \dfrac{1}{2}\sqrt {{{\overrightarrow {AB} }^2}.{{\overrightarrow {AC} }^2} - {{\left( {\overrightarrow {AB} .\overrightarrow {AC} } \right)}^2}} .\) (đpcm)