Cho \(x_1=\sqrt{3+\sqrt{5}};x_2=\sqrt{3-\sqrt{5}}\). Tính \(x_1.x_2;x_1^2+x_2^2\)
cho pt : \(x^2+\sqrt{3}x-\sqrt{5}=0\)
c/m pt có 2 nghiệm \(x_1\)và \(x_2\) và tính \(\sqrt{x_1}+\sqrt{x_2}\)
Vì a*c<0
nên PT có hai nghiệm phân biệt trái dấu
Cho \(x_1,x_2\) là nghiệm của phương trình \(x^2-2702x+1=0\). Tính giá trị của biểu thức \(M=\sqrt{x_1}+\sqrt[3]{x_1}+\sqrt{x_2}+\sqrt[3]{x_2}\)
Cho phương trình:\(x^2-\left(2m+5\right)x+2m+1=0\)
Tìm m để phương trình có 2 nghiệm phân biệt \(x_1;x_2\) sao cho P=/\(\sqrt{x_1}-\sqrt{x_2}\) /đạt GTNN
Phương trình có 2 nghiệm phân biệt ⇔ △ > 0
⇔ 4m2 + 20m + 25 - 8m - 4 > 0
⇔ 4m2 + 12m + 21 > 0
⇔ (2m + 3)2 + 12 > 0 ⇔ m ∈ R
Theo hệ thức Viet có: \(\left\{{}\begin{matrix}x_1+x_2=2m+5\\x_1.x_2=2m+1\end{matrix}\right.\)
=> P2 = (\(\left|\sqrt{x_1}-\sqrt{x_2}\right|\))2 = (\(\sqrt{x_1}-\sqrt{x_2}\))2
= x1 + x2 - 2\(\sqrt{x_1.x_2}\)
= 2m + 5 - 2\(\sqrt{2m+1}\)
= 2m + 1 - 2\(\sqrt{2m+1}\) + 1 + 3
= (\(\sqrt{2m+1}\) - 1)2 + 3 ≥ 3 ∀m
=> P ≥ \(\sqrt{3}\)
Dấu "=" xảy ra ⇔ \(\sqrt{2m+1}\) - 1 = 0 ⇔ \(\sqrt{2m+1}\)=1 ⇔ 2m + 1 = 1 ⇔ m = 0
Vậy với m = 0 thì P đạt GTNN = \(\sqrt{3}\)
Cho pt : \(x^2-3x+m=0\). Tìm m để PT có 2 nghiệm phân biệt \(x_1;x_2\)thỏa :
\(\sqrt{x_1^2+1}\sqrt{x_1^2+1}=3\sqrt{3}\)
Đề là \(\sqrt{x_1^2+1}\sqrt{x_1^2+1}\)hay là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
làm theo đề là \(\sqrt{x_1^2+1}\sqrt{x_2^2+1}\)
ta có để PT \(x^2-3x+m=0\)có 2 nghiệm phân biệt
=>\(\Delta=\left(-3\right)^2-4m>0< =>9>4m< =>m< \frac{9}{4}\)
theo Vi-ét
=>\(\hept{\begin{cases}x_1+x_2=3\\x_1.x_2=m\end{cases}}\)(1)
Ta có:
\(\sqrt{x_1^2+1}\sqrt{x_2^2+1}=3\sqrt{3}< =>\left(x_1^2+1\right)\left(x_2^2+1\right)=\left(3\sqrt{3}\right)^2=27\)
\(=>\left(x_1x_2\right)^2+x_2^2+x_1^2+1=27< =>x_1^2x_2^2+\left(x_1+x_2\right)^2-2x_1x_2=26\)
thay (1) vào :\(m^2+9-2m=26< =>m^2-2m-17=0< =>\orbr{\begin{cases}m=1+3\sqrt{2}\\m=1-3\sqrt{2}\end{cases}}\)
Mà \(m< \frac{9}{4}=>m=1-3\sqrt{2}\)
Cho pt \(x^2-\left(2m+5\right)x+2m+1=0\). Tìm m để pt có 2 nghiệm \(x_1\), \(x_2\) thỏa mãn \(P=\left|\sqrt{x_1}-\sqrt{x_2}\right|\) đạt GTNN.
\(\Delta=4m^2+20m+25-8m-4=4m^2+12m+21=\left(2m+3\right)^2+12>0\)
với mọi m => pt có 2 nghiệm phân biệt x1 và x2
theo Viet (điều kiện m > -1/2)
\(\left\{{}\begin{matrix}x1+x2=2m+5\\x1.x2=2m+1\end{matrix}\right.\)
\(p^2=x1-2\left|\sqrt{x1.x2}\right|+x2=2m+5-2\sqrt{2m+1}=\left(\sqrt{2m+1}-1\right)^2+3\ge3< =>p\ge\sqrt{3}\)
dấu bằng xảy ra khi \(\sqrt{2m+1}=1< =>m=0\left(tm\right)\)
cho \(\sqrt{2x+3}+\sqrt{y+3}=4\)
\(P=\sqrt{x+2}+\sqrt{y+9}\) đạt max tại \(x_1;y_1\) . tính :\(x_1^2+x_2^2\)
Câu 1.Cho P=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn P
b,Tìm GTNN của P.\(\sqrt{x}\)
Câu 2.Cho pt: x2- mx - 4 = 0
Chứng minh: \(\dfrac{2\left(x_1+x_2\right)+7}{x_1^2+x_2^2}\ge-\dfrac{1}{8}\forall m\)
Câu 1 :
\(P=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Câu 2 :
Ta có :
\(\Delta=m^2+16>0\)
\(=>\) phương trình có 2 nghiệm phân biệt .
Theo định lý vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=-4\end{matrix}\right.\)
Thay vào ta được :
\(\dfrac{2m+7}{m^2+8}\ge-\dfrac{1}{8}\)
\(\Leftrightarrow16m+56\ge-m^2-8\)
\(\Leftrightarrow m^2+16m+64\ge0\)
\(\Leftrightarrow\left(m+8\right)^2\ge0\) ( đúng )
Cho phương trình `x^2- 4x + 3 = 0 ` có hai nghiệm phân biệt `x_1,x_2 `. Không giải phương trình, hãy tính giá trị của biểu thức : `\sqrt{x_1}+``\sqrt{x_2}`
\(x^2-4x+3=0\)
Theo vi-et, ta có: \(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Đặt \(A=\sqrt{x_1}+\sqrt{x_2}\)
=>\(A^2=x_1+x_2+2\sqrt{x_1x_2}\)
=>\(A^2=4+2\cdot\sqrt{3}\)
=>\(A=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
Cho phương trình \(x-\sqrt{6x}-3+2m=0\)
Tìm m để phương trình có 2 nghiệm thỏa \(\frac{x_1+x_2}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)
Cô hướng dẫn thôi nhé ^^
Coi phương trình trên là phương trình bậc hai với ẩn \(\sqrt{x}\)
Để phương trình trên có 2 nghiệm \(x_1;x_2\) thì nó phải có 2 nghiệm phân biệt cùng dương \(\sqrt{x _1};\sqrt{x_2}\).
Điều này tương đương \(\Delta>0,S>0,P>0\) hay \(\frac{9}{4}>m>\frac{3}{2}\)
Khi đó theo Viet ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{6}\); \(\sqrt{x_1x_2}=2m-3\)
Vậy điều kiện trên tương đương: \(\frac{\left(\sqrt{x_1}+\sqrt{x_2}\right)^2-2\sqrt{x_1x_2}}{\sqrt{x_1}+\sqrt{x_2}}=\frac{\sqrt{24}}{3}\)
Thế vào ta có: \(\frac{6-2\left(2m-3\right)}{\sqrt{6}}=\frac{\sqrt{24}}{3}\Rightarrow12-4m=4\Rightarrow m=2\)
Chúc em học tốt ^^