cho phương trình \(x^2-2\left(m-1\right)x+m-3=0\)
tìm giá trị của m để \(\sqrt{x_1}+\sqrt{x_2}=5\)
\(x^2-2\left(m+5\right)x+2m+9=0\)
tìm m để bất phương trình có 2 nghiệm phân biệt x1;x2 sao cho \(x_1-2\sqrt{x_2}=0\)
1) rút gọn biểu thức sau :
a) \(\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\) b) \(\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\) c ) \(\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
d) \(\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\) e) \(\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{y}}\) ( với x>0 , y>0 )
f) \(\sqrt{8-2\sqrt{15}}+\sqrt{5}+\sqrt{3}\) g) \(\sqrt{9-2\sqrt{4}}-\sqrt{9+2\sqrt{14}}\)
1. Tính:
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\)
2. Chứng minh:
a) \(\dfrac{\left(3\sqrt{xy}-6y.2x\sqrt{y}+4y\sqrt{x}\right)\left(3\sqrt{y}+2\sqrt{xy}\right)}{y\left(\sqrt{x}-2\sqrt{y}\right)\left(y-4x\right)}=1\)
b) \(\left(\sqrt{x}-\sqrt{y}-\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right)\left(\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}+\dfrac{y}{\sqrt{x}-\sqrt{y}}-\dfrac{2\sqrt{xy}}{xy}\right)=\sqrt{x}+\sqrt{y}\)
giải hệ pt sau
\(\left\{{}\begin{matrix}y^3+\sqrt{8x^4-2y}=2\left(2x^4+3\right)\\\sqrt{2x^2+x+y}+2\sqrt{x+2y}=\sqrt{9x-2x^2+19y}\end{matrix}\right.\)
Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!
Rút gọn các biểu thức sau:
a)\((4\sqrt{x}-\sqrt{2x})(\sqrt{x}-\sqrt{2x})\)
b)\((2\sqrt{x}+\sqrt{y})(3\sqrt{x}-2\sqrt{y})\)
Tìm x, y
a) \(\sqrt{1-x}+\sqrt{4+x}=3\)
b) \(x^2+4x+5=2\sqrt{2x+3}\)
c) \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
1. So sánh: \(\sqrt{3}\) và \(5-\sqrt{8}\)
2. Tìm Min, Max
a/ x = \(\sqrt{x^2-2x+5}\)
b/ y = \(\sqrt{\dfrac{x^2}{4}-\dfrac{x}{6}+1}\)